

X2S
XPath query processing

for relational databases

Diplomarbeit

Am Institut für Programmstrukturen und Datenorganisation (IPD)

Fakultät für Informatik der Universität Karlsruhe

und FZI Forschungszentrum Informatik

Tom Gelhausen

Juli 2002
Verantwortlich: Prof. Dr. Peter C. Lockemann

Betreuer: Aleksei Valikov

 Wassilios Kazakos

Abstract

This thesis shows a way to represent relational database content as a virtual

XML document and how to process queries in natural XML access language

(XPath) against this data. Design principals were both, efficiency and minimal sys-

tem requirements to support also relational database systems without any type of

build-in XML support. This is a read-only approach so far.

The supported XPath features are

• NodeTest: NameTest and NodeType

• 8 axes (ancestor, ancestor-or-self, attribute, child, descendant,

descendant-or-self, parent, self, unrolling is limited to mapping defini-

tions depth)

• relative navigation (starting from context node)

• Constants: Numbers and Literals (Strings)

• Operations: in principle all standard XPath 1.0 operations (additive (+,

-), multiplicative (*, div, mod), and, or, equality (=, ≠), relational (>, ≥, <,

≤), union, sign)

 - 2 -

Table of Contents

ABSTRACT..2

TABLE OF CONTENTS..3

TABLE OF FIGURES ...5

TABLE OF ABBREVIATIONS ...6

PREFACE ..7

1 INTRODUCTION ..9
1.1 MOTIVATION..9
1.2 AN EXAMPLE ...10
1.3 SCOPES ..11
1.4 OVERVIEW ...12

2 BASICS .. 13
2.1 RELATIONAL DATABASES ..13
2.2 XML ..14
2.3 XPATH ...15

3 CONCEPTUAL CONSIDERATIONS ... 17
3.1 PARADIGM GAPS ..17
3.1.1 RECURSIVE STRUCTURE OF XML DOCUMENTS.. 17
3.1.2 ORDER OF ELEMENTS IN AN XML DOCUMENT ... 18
3.1.3 NAVIGATION AND CONTEXT NODES ... 19
3.2 CHOOSING THE MAPPING ..19
3.3 RETURNED RESULTS ...21
3.4 CONSISTENCY..22

4 STATE OF THE ART... 25
4.1 MICROSOFT SQL SERVER 2000 XPATH QUERYING ..25
4.1.1 RETRIEVING XML DATA VIA TRANSACT-SQL .. 25
4.1.2 RETRIEVING XML DATA VIA TEMPLATES... 25
4.1.3 RETRIEVING XML DATA VIA XPATH... 26
4.1.4 METHOD: THE EXPLICIT MODE... 27
4.1.5 DISTINCTIONS OF APPROACHES ... 29
4.2 IBM (XPERANTO/XTABLES) ..30
4.3 JAIN/MAHAJAN/SUCIU (UNIVERSITY OF WASHINGTON) ...32
4.4 OTHER APPROACHES ...33
4.4.1 XREL... 33
4.4.2 XALAN (APACHE) .. 34
4.4.3 ORACLE... 34
4.4.4 ROLEX ... 35
4.5 SUMMARY ..35

5 DESIGN & REALIZATION ... 37
5.1 VIRTUAL DOM ..37

 - 3 -

5.2 EXTENDED EXAMPLE...40
5.3 THE BASIC OBJECT MODEL...42
5.4 DEMANDED TRANSLATION ..46
5.4.1 TRANSLATING ELEMENTS AND COLUMNS .. 46
5.4.2 TRANSLATING CONDITIONS .. 46
5.4.3 TRANSLATING NESTED ELEMENTS... 46
5.4.3.1 FIRST APPROACH .. 47
5.4.3.2 CORRECTLY TRANSLATING NESTED ELEMENTS... 47
5.4.4 TRANSLATING EXISTENCE .. 48
5.4.5 TRANSLATING CROSS PRODUCTS.. 49
5.5 THE SETUP ..50
5.5.1 BASIC CONSIDERATIONS... 51
5.5.2 REQUIREMENTS .. 51
5.5.3 ASYMMETRICAL (N:1) RELATIONS .. 52
5.5.4 EXAMPLE .. 53
5.6 EXPRESSIONS ..54
5.6.1 MATRIX OPERANDS... 55
5.6.2 UNNESTING MATRIX OPERANDS .. 56
5.6.3 THE EXPRESSION OBJECT MODEL ... 58
5.6.4 DOUBLE TREE ILLUSTRATION .. 60
5.7 THE PATH TRACING GRAPH (PTG)..61
5.7.1 CLEAR POSITION WITHIN THE TEMPLATE DOCUMENT... 62
5.7.2 MOVING AROUND IN THE TEMPLATE DOCUMENT .. 62
5.7.3 AN EXAMPLE FOR BUILDING THE PATH TRACING GRAPH.. 62
5.7.4 NAVIGATION ALONG THE AXES... 63
5.7.4.1 NAVIGATION TO ASCENDANT NODES.. 64
5.7.4.2 NAVIGATION TO DESCENDANT NODES ... 64
5.7.4.3 NAVIGATION ALONG THE SELF AXIS... 64
5.7.4.4 NAVIGATION TO ATTRIBUTES ... 64
5.7.5 TRANSFORMATION OF THE PTG TO SQL.. 65
5.8 THE CORE ALGORITHM ...66
5.8.1 BUILDING THE EXPRESSION ... 66
5.8.1.1 PROCESSING A STEP ... 67
5.8.1.2 PROCESSING A PREDICATE ... 71
5.8.1.3 PROCESSING AN N-ARY EXPRESSION ET AL. .. 72
5.8.2 TRANSFORMING THE EXPRESSION.. 72
5.8.3 SERIALIZING THE EXPRESSION TO SQL QUERIES .. 73
5.8.4 CREATING VIRTUAL DOCUMENT NODE INSTANCES ... 73
5.9 REALIZATION ...74

6 CONCLUSION AND FUTURE WORK... 77

APPENDIX A... 79

APPENDIX B... 81

APPENDIX C... 83

APPENDIX D... 85

APPENDIX E... 87

BIBLIOGRAPHY... 89

 - 4 -

Table of Figures

Figure 1-1 Naïve Approach... 10
Figure 1-2 An example database schema... 11
Figure 1-3 An XML document represen ing relational database content .. 11 t

r

i

s

r

t s t

e

s

s s
st

s

r
t

Figure 2-1 An example illustrating the comparableness of directory tree and XML t ee 14
Figure 2-2 Visualization of the axes... 16
Figure 3-1 An XML document simulating relational database content ... 20
Figure 3-2 Example XPath query for a simulat ng document .. 21
Figure 3-3 Example XPath query for a representing document ... 21
Figure 3-4 Translated SQL query .. 21
Figure 4-1 Example XPath Query u ing HTTP... 26
Figure 4-2 Example annotated XML-Data Reduced Schema ... 27
Figure 4-3 Result of the example query ... 27
Figure 4-4 Microsoft’s three step process... 27
Figure 4-5 Universal Table for /company[@name=’FZI’] .. 28
Figure 4-6 XDR for the example from Section 1.2 ... 28
Figure 4-7 XTABLES Query P ocessing Architecture .. 31
Figure 4-8 Obtaining relational data in Xalan .. 34
Figure 4-9 Summary of Comparison of Approaches .. 35
Figure 5-1 Naïve approach ... 38
Figure 5-2 Virtual document as proxy for da aba e access functions, i.e. naviga ion 38
Figure 5-3 Query processing within the frontiers of the RDBMS... 39
Figure 5-4 Operating on the view and operating on the model .. 39
Figure 5-5 The Extended Examples r lational schema... 40
Figure 5-6 Some sample table data .. 41
Figure 5-7 The document structure of the Extended Example... 41
Figure 5-8 XML representation of the Extended Example ... 42
Figure 5-9 XPath query obtaining a flat enumeration of employees.. 42
Figure 5-10 XPath query obtaining only the ‘bosses’ .. 42
Figure 5-11 The Ba ic Object Model .. 43
Figure 5-12 Navigation from an attribute to its containing element ... 44
Figure 5-13 Navigation from an element to its containing parent element ... 45
Figure 5-14 XPath: all companies names... 46
Figure 5-15 SQL: all companies names.. 46
Figure 5-16 XPath: the id of the company called ‘FZI’ .. 46
Figure 5-17 SQL: the id of the company called ‘FZI’ ... 46
Figure 5-18 XPath: the names of all divisions of all companies ... 47
Figure 5-19 XPath: the names of all divisions ... 47
Figure 5-20 SQL: the names of all divisions of all companies... 47
Figure 5-21 SQL: the names of all divisions .. 47
Figure 5-22 XPath: the names of all companies where either the company itself, any of its division,

or any of its employees has the name ‘Knox’ ... 48
Figure 5-23 SQL: the names of all companies where either the company itself, any of its division, or

any of its employees has the name ‘Knox’.. 48
Figure 5-24 SQL: the names of all companies where either the company itself, any of its division (if

it has any), or any of its employees (if it ha any) ha the name ‘Knox’............................... 48
Figure 5-25 XPath: the names of all companies for which at least one division as well as at lea

one employee i stored .. 48
Figure 5-26 SQL: the names of all companies for which at least one division as well as at least one

employee is stored... 49
Figure 5-27 XPath: cross product example .. 49
Figure 5-28 SQL: wrong translation of the cross product example .. 50
Figure 5-29 SQL: correct t anslation of the cross product example ... 50
Figure 5-30 XPa h: common parent ... 50
Figure 5-31 SQL: common parent .. 50
Figure 5-32 Extracting Schemas from the Setup .. 51
Figure 5-33 Providing one Schema, creating the Setup and extracting the other one 51
Figure 5-34 Linking (A) vs. Inlining (B)... 53

 - 5 -

Figure 5-35 XPath query for the inline draft (B)... 53
Figure 5-36 XPath query for the linked draft (A) .. 53
Figure 5-37 An example XML Schema for the Setup .. 54
Figure 5-38 An XPath query with a matrix operand... 55
Figure 5-39 Example Expression containing 3 Matrix Operands, none resolved 56
Figure 5-40 Example Expression containing 3 Ma rix Operands, firs resolved 56 t t

t
t

i

er r
er

t ct
r

t

e

Figure 5-41 Example Expression containing 3 Ma rix Operands, second resolved................................. 57
Figure 5-42 Example Expression con aining 3 Matrix Operands, all resolved.. 57
Figure 5-43 Example Expression containing 3 Matrix Operands, all resolved, using common sub

expressions .. 58
Figure 5-44 UML diagram for the Express on Object Model .. 59
Figure 5-45 optimize() implementation for the AND operation ... 60
Figure 5-46 optimize() implementation for an Operand Set .. 60
Figure 5-47 Double Tree Representation of /c/d/e[@id=5]/@name.. 61
Figure 5-48 Double Tree Representation of /c[@name=’FZI’]/d/e/@name .. 61
Figure 5-49 Building the Path Tracing Graph (first term) ... 63
Figure 5-50 Building the Path Tracing Graph (second term) ... 63
Figure 5-51 SQL query with serialized PTG.. 65
Figure 5-52 The ‘univ sal table’ build fo the example query ... 66
Figure 5-53 The ‘univ sal table’ with visualized nesting .. 66
Figure 5-54 Working on the ProxyNodes .. 68
Figure 5-55 Process one step (first approach).. 68
Figure 5-56 Navigation on template viola ing the stru ural relation to progenitor.............................. 69
Figure 5-57 Navigation on template rega ding the structural relation to progenitor 70
Figure 5-58 XPath query that will fail in pass by reference semantics.. 71
Figure 5-59 Translation of the pass by ref. vs. pass by val. seman ics... 71
Figure 5-60 Pseudo Code for Function processStep .. 71
Figure 5-61 Pseudo Code for Function processPredicate .. 72
Figure 5-62 Five test queries for our prototype ... 74
Figure 5-63 Translation speed for 9/12/15/18 Nodes in S tup .. 75
Figure 6-1 Current Approaches.. 77

Table of Abbreviations

DOM Document Object Model, see [W3C98b]
DBMS Database Management System
PTG................ Path Tracing Graph, see Section 5.7
RDBMS.......... Relational Database Management System
SAX Simple API for XML Processing
URL Uniform Resource Locator
W3C World Wide Web Consortium, see http://www.w3c.org
XDR XML-Data Reduced Schema
XML Extensible Markup Language, see [W3C98a]
XSD................ XML Schema Definition

 - 6 -

http://www.w3c.org/

Preface

This diploma thesis emerged from an ‘it-would-be-nice-to-have’ idea. Starting

to search for an appropriate tool, we soon figured out that no existing1 tool fits ex-

actly our wishes. Indeed, a lot of approaches existed to bridge the gap between XML

and relational databases. In each of them were lacks of features for our special re-

quirements. So, we started the research for this thesis.

Not only the results evolved through the time of working, but also the problem

of the postulation of requirements has been clarified increasingly. Task and solu-

tion were improved together with the growth of understanding the problem. A tool

emerged that provides a unique combination of purpose and approaches up to date2.

1 November 2001
2 July 2002

 - 7 -

 - 8 -

1 Introduction

Due to the simple and nonetheless powerful structure and the good data ex-

changeability between distributed systems, the Extensible Markup Language

(XML) has become more and more popular as a technology for structured and semi-

structured representation of information. The well known advantages of this tech-

nique lead to a steadily growing number of IT solutions using XML to store, to

exchange, or to transform data and even to communicate through XML based pro-

tocols like SOAP.

Meanwhile, there exist long evolved applications which are build on top of old

database systems. Some of these systems have very limited support for XML, oth-

ers may have a lack of support for this technology at all.

Currently a lot of different approaches try to connect relational databases and

the world of XML. Each of them has a slightly different attitude on how to do that.

Ours is to provide a direct mapping (a “view” in database theory terms) from XML

to relational data, so that the resulting virtual XML document can be queried just

like a normal XML document using the XPath query language.3

1.1 Motivation

The idea is to query a relational database by XPath to allow modern XML

based components to access existing data in relational database systems, even if

they have none or only limited support for XML. It seems adjacent to choose XPath,

since it is a very popular query language for XML documents and other query lan-

guages for semi-structured data like X-QL or XQuery (see [ChF+01]) are based on it.

Another way to obtain relational data within an XML solution is to use embed-

ded SQL commands, for instance. However, this possibility forces the developer to

switch between the notions of the relational data model, the relational schema and

the semi-structured document model concepts and the schema of his XML compo-

nent. The thus created module depends not only on the XML design but also on the

relational systems layout. Exchanging the underlying relational database against a

native XML database later on becomes unnecessarily difficult, for instance.

3 XPath is a language for addressing parts of an XML document. It is standardized by
the W3C (see http://www.w3.org/TR/xpath) and designed to be used in XSLT and XPointer,
two more standards of the W3C. Even though we give a very short introduction to what we
need, we expect the reader of this document to be handy with the relational model, the semi-
structured model of XML data, the query language XPath, and SQL.

 - 9 -

http://www.w3.org/TR/xpath

A platform independent middle tier translating XPath queries into SQL que-

ries and returning the results in XML form would allow XML based components to

access the relational data in document schema terms instead in relational database

schema terms, without the need to install a new RDBMS with some kind of XML

support build in. The solution should just rely on the similarities (SQL-92 entry

level) of the common relational database systems, thus run on the major commer-

cial database servers and on most freely available systems, too.

XML
Component

Middle Tier RDBMS

Data
Export

XPath query

XPath query

Result

Result

Figure 1-1 Naïve Approach

A pretty simple and straight forward solution to allow XPath processing on re-

lational database data would be to export all data from the database into an XML

document and then use an existing tool to evaluate XPath expressions against it as

depicted in Figure 1-1. For a database of several terabytes in size this is obviously

impossible. Assuming we only want to get the name attribute of an element with a

given ID, the naïve approach drags substantially more data to the client computer

to just discard it right after instead of only obtaining what is needed. So, even for a

system containing very few data, this procedure would create a tremendous over-

head in comprehension to the amount of data typically selected by an XPath

expression.

1.2 An Example

Say we have a database containing three tables COMPANY, DIVISION, and EMPLOYEE.

Each company, each division, and each employee are identified by an ID and a

name attribute. Each division belongs to one company and each employee belongs

to one division. Further on, each employee might report to an other employee (see

Figure 1-2).

 - 10 -

CID
Name

Company
DID

Company

Division

Name

EID
Division

Employee

Boss
Name

Primary Key

Foreign Key Reference

Figure 1-2 An example database schema

The relational model expresses this kind of containment (‘belongs to’) by for-

eign key constraints and join condition in SQL queries. An XML document, on the

other hand, can even better express such containments, namely through nested

elements.

Within an XML solution, we would want to query the database in the form

/company/@name to obtain the name of a company. Likewise

/company[@name=’FZI’]/division should select all divisions of the company named

FZI. Of course, the meaningful queries (those that potentially could return a result)

depend on the structure of the virtual document. A possibility for the relational con-

tent as an XML document is shown in Figure 1-3.

<company id="0" name="FZI">
 <division id="0" name="DBS">
 <employee id="0" name="Lockemann">
 <employee id="1" name="Kazakos">
 <employee id="2" name="Valikov"/>
 </employee>
 </employee>
 </division>
 <division id="1" name="Prost"/>
</company>

Figure 1-3 An XML document represen ing relational database content t

1.3 Scopes

The goal of this thesis is to find an efficient way to transform an XPath query

into a query that a relational database system can process. Since most of the exist-

ing relational database systems support SQL-92 entry level as query language, in

order to support a wide range of platforms, an XPath query is translated into one or

several equivalent SQL queries. Since XPath and SQL are declarative query lan-
guages (the user states what to return and not how to obtain), the main task is to

close the gap (see Section 3.1) between the relational model and the tree-like XML

data model.

For performance reasons, as much of the result computation as possible should

be made within the relational query engine. Contrariwise, as few as possible dis-

 - 11 -

tinct SQL statements should be created to allow the relational query optimizer to

work efficiently and to reduce the connection overhead.

A view shall be provided to allow natural XPath querying of the relational con-

tent. This view shall be configurable to allow user customization. To avoid the

drawback of ‘deep-materialized’ result tree fragments (see Section 3.3), the solution

ought to provide an object model allowing the access to the whole virtual document

requiring only a very limited portion of it to be materialized. Besides the matter of

scalability, this enables relative queries and thus user interactivity.

1.4 Overview

Chapter 2 will give an overview of the concepts of XML, XPath, and relational

databases as far as we need them for this thesis. As we expect the reader of this

thesis not to be a newbie to these topics, this chapter might be regarded as recall of

previous knowledge and as clarification of the terms that will be used further on in

this thesis.

The conceptual considerations of Chapter 3 reveals some basic phenomenon,

that every approach must have been taking (or at least should have been taking)

into account before the design started.

The next step is to find out how current approaches meet our requirements,

this can be found in Chapter 4. We will look upon some solutions that come from

research groups as well as those that are available from the “big three” (Oracle, Mi-

crosoft, and IBM) in their relational database products.

The main chapter of this thesis, Chapter 5, deals with the proposed solution for

the task. First, the abstract data types, or in other words “the object model”, will be

introduced. Since the task is to find an algorithm, it is necessary to explain the

model, its terms, and its functions provided to build the complex algorithm upon. Of

course, the abstraction level stays high enough to be implementation independent.

This thesis is closed by the Chapter 6, “Conclusion and ”.

 - 12 -

2 Basics

This chapter gives a quick introduction to the terms and conventions we will

use in the following. It is not intended to teach SQL, XML, or XPath. For this pur-

pose, we would advise to refer to the literature mentioned in the corresponding

section.

2.1 Relational Databases

The interface between this approach and the RDBMS’s it is expected to work

on, is SQL. Consequently we can not reflect on the mathematically accurately de-

fined relational data model itself but what SQL presents us thereof. So, when

talking of ‘the relational model’ the view onto it provided by SQL is referred to.

Basically, the relational model stores tuples, sometimes also referred to as

rows. These tuples consists of values from different domains. Informally spoken, a

domain is a data type in conjunction with an interpretation of the value, in example

an integer representing the index number of an element or the age (in years) of a

car. The domains are also referred to as columns.

The total amount of tuples of one type (unique combination of domains) is

stored in a rela ion, often referred to as table. Per se, a table is not a mathematical

set4 and may contain duplicates. Duplicates are two or more tuples containing the

same values for each domain.

t

t

e

Duplicates in tables may be undesired. For this case, most RDBMS’s provide

constraints. Constraints are conditions that always have to be fulfilled by every

single row of the table. So if we require the tuples to contain a unique value for a

certain domain (or a unique combination of values for a certain combination of do-

mains), the set can not contain duplicates any more, since the compliance of

constraints is always ensured by the DBMS. This is called key constraint, the cor-

responding domain is often called the key of the relation, or he key column of a

table. For if multiple domains have been inflicted a key constraint, we call it com-
bined k y.

Another common constraint is the foreign key constraint. It demands, that the

tuples of a table only contain values in a certain domain which also occur in the key

column of another table. This is also valid for combined keys, of course.

4 not in the SQL view of the relational data model, see [LaLo95]

 - 13 -

For further details on this topic, refer to [LaLo95]. For details on SQL we would

recommend [Date93] or [GrWe94].

2.2 XML

XML is a method to present (semi-)structured information (documents) as text.

This text is not intended to be read by a user but to be processable (and debugable

by a developer with the aid of a simple text editor, in time of need) in a platform in-

dependent manner. More precisely, XML provides a syntax to markup documents

in a way that is independent of any further way of processing or presenting.

Two terms that need to be distinguished are the docum nt instance (or only

docum nt) and the document type (or its schema). The document type describes the

structure of document instances. These instances’ content is independent among

them, only their assemblies are equal.

e
e

e

XML documents are build from elements and their attributes (and some other

constructs we will not need in the following). Elements can be nested, that is to say

an element may have other child elements. The structure is thus recursive.

Usually, recursive structures are presented as a tree. Accordingly, the W3C

who ‘recommended’ (their term for ‘adoption’) XML (see [W3C98a]) introduced the

Docum nt Object Model (DOM) (see [W3C98b]). This is a set of interfaces allowing

tree-like navigation through the nodes (both, elements and attributes are consid-

ered as nodes) of an XML document and to access their values via the non-complex

data type string.

For further details on XML, refer to [KaST02], [HaMe01], or [Brad01].

<Java>
 <Doc>
 <ClassGenerator/>
 <SchemaProcessor/>
 <XMLParser>
 <images/>
 </XMLParser>
 </Doc>
 <Lib>
 <Servlets>
 <classes/>
 <doc>
 <images/>
 </doc>
 <lib/>
 <src/>
 </Servlets>
 </Lib>
</Java>

Figure 2-1 An example illustrating the comparableness of directory tree and XML t ee r

 - 14 -

2.3 XPath

XPath has been invented to select parts of an XML document. According to the

path expressions in Unix which navigate through the directory tree, XPath expres-

sions navigate through the tree formed by the elements of an XML document. An

example illustrating the comparableness of a directory tree and the document tree

of an XML file can be seen in Figure 2-1. An expression like /Lib/Servlets/src

would select the very last node of that example, as well in XPath as in Unix direc-

tory expression syntax. (Indeed, the Unix directory expression and the XPath query

look exactly alike in this case.)

A location path, the XPath term for an expression like the example from the

previous paragraph, consists of multiple steps. In this case the steps are Lib,

Servlet, and src. Each step selects a set of nodes from the XML document and

passes them to the next step. For this next step, they form the context the process-

ing of the next result set is starting from. So the first step, Lib, selects all nodes

with the name ‘Lib’, the second step selects all its children with the name ‘Servlet’

(there is only one in this example), and so on.

Two additional features, Unix path expressions do not have, are predicates and

axes. Predicates are conditions which are inflicted on certain steps. Only nodes are

put into the result set that evaluate these conditions to true. The usage of predi-

cates is optional. But also multiple predicates may be appended to a step – each in

squared brackets right before the next slash (‘/’). The condition itself is an XPath

expression (recursiveness!) whose result is interpreted as Boolean value.

The concept of axes extends the functionality known of ‘.’ and ‘..’ in Unix path

expressions. The single dot ‘.’ selects the directory itself, the double dot ‘..’ the par-

ent directory. Likewise, the self axis selects the node itself, the parent axis selects

the parent node. Further on, there exist several other axes as shown in Figure 2-2.

The axis is an integral part of every step. They were just invisible in the above

example, since it made use of a legal abbreviation: the child axis is default and can

thus be omitted. In all other cases, the axis needs to be defined, either through its

name, followed by two colons (‘::’) in front of the step, or indirectly through an ab-

breviation (‘.’, ‘..’, and ‘@’ for the attribute axis are also allowed).

Six axes are not mentioned in Figure 2-2. These are attribute, following,

following-sibling, previous, previous-sibling, and namespace. The attribute axis

simple selects the set of attributes of the context element, the other five axes are

not supported within this approach and will thus not be introduced here.

 - 15 -

1

self

1 2 3

child

1

parent

1

2

3 4

5 6
descendant

11

2

3

4 5

6 7
descendant-or-self

1

2

ancestor

11

2

3

ancestor-or-self

Figure 2-2 Visualization of the axes

The axis provides a kind of preselection of possible result nodes of the corre-

sponding step. All nodes that lie on the axis are candidates. All candidates that

match the name test (‘Lib’, ‘Servlet’ and ‘src’ for the above example) and the op-

tional predicates of the step are added to the result set. The last step of a location

path returns the result nodes of the complete query.

[KaST02] gives a short introduction to XPath including some constructs missing

here. Alternatively, [Kay01] may be used as very detailed reference also containing a

lot of examples and hints. The pictures in this section have been taken from [Vali02]

with kind permission of the author.

 - 16 -

3 Conceptual Considerations

Before we compare existing solutions with what we demand, we will take a

quick look onto some peculiarities, every approach has to be regarded. These due to

the incompatibilities of the relational and the semi-structured data model, and to

the requirements claimed by a user of such a solution.

3.1 Paradigm gaps

The main problem in the process of translating XPath queries into SQL queries

is due to the paradigm gap between XML’s tree-like document structure in contra-

diction to the flat set of collections structure of relational data. This section

provides a quick survey on them.

3.1.1 Recursive Structure of XML documents

In an XML document, the different elements are recursively nested. The level

of nesting is unlimited. XPath reflects this property by providing mechanisms to

deep search the document tree. The descendant-or-self axis for instance provides

such a function.

On the other hand, most current database management systems comply only

with the entry level of the SQL-92 standard. Neither the standard nor the rela-

tional model itself does permit recursive queries in any way. Different suppliers

offer non-standard extensions to provide support for recursive queries. But because

of the postulated platform independency, our approach can not take them into ac-

count.

Apart from that, the database misses meta information that may be contained

in an XML document according to the explanations given in section 1.2 pertaining

the representation. Of course, this metadata must be provided as well to the view

as to a translator.

The metadata declaring the mapping from the relational structure to the struc-

ture of the virtual document is called Setup in this approach. For further details see

section 5.4, we just want to introduce the term here.

 - 17 -

3.1.2 Order of elements in an XML document

In an XML document, all elements are strictly ordered. This becomes quite ob-

vious when thinking of another representative from the SGML family, HTML. The

order of the paragraphs and headline elements is of great importance. Due to their

document centric design, XML documents fully comply with this property. The

following axis for instance selects all the document content, from the cursor up to

the end.

The relational model again has no correspondence to this feature. Neverthe-

less, SQL provides ordering via the ORDER BY clause. This allows us to define an

order within equal element types of our virtual document, based on the values of

one or more of their attributes. However, a mixed structure, something like alter-

nating paragraphs and headlines in HTML documents, will not be possible.

Due to the nature of a relational database, the maximum order we can achieve

in a virtual XML document is

a) Structurally ordered (all elements of one type are either before or after

all elements of an other type, i.e. AABBCC, not ACBABC):

∀c1,c2,c3∈C : t(c1)=t(c2) ∧ t(c1)≠t(c3) → (p(c1)>p(c3)∧p(c2)>p(c3)) ∨

(p(c1)<p(c3)∧p(c2)<p(c3)), and

b) Internally ordered (the order of elements of one type is determined on

the basis of one or several of their attributes): ∀c1,c2∈C :

t(c1)=t(c2) ∧ v(c1.a)>v(c2.a) → p(c1)>p(c2)

whereas C is the set of child elements of a node, t(x) is the element type of x,

p(x) is the position of x in the virtual document, v(x) is the value of x, and x.a is the

attribute selected as sort criteria.

The structural order is relatively easy to fulfill. It just requires that items of

one type all are processed at the same time and before or after items of other types.

This should normally be ensured automatically by any naïve approach to obtain

data from different sources.

A deterministic internal order may be simulated by ORDER BY clauses in the

translated queries. Thus, if internal ordering is required, hints on how to totally or-

der every tables elements have to be provided. These hints must contain

information on every columns priority and sorting direction.5

Since this approach automatically ensures structural order as described above

and neither supports the preceding, preceding-sibling, following, and following-

5 We can weaken this demand to “every key columns priority and sorting direction” if no

special order is required.

 - 18 -

sibling axes, nor any XPath functions like position() or last() for now, we will not

reflect on ordering in the realization part.

3.1.3 Navigation and Context Nodes

XPath queries support context nodes as origin for relative queries. Having ob-

tained a single node, we can still access the rest of the document by relative

queries, starting from the result node.6 This is possible, because every node has a

certain identity that is independent of any attribute values. A node may have a

unique ID attribute or it might have been assigned such an attribute internally, but

the point is that it has conceptually an identity, no matter how it is expressed (or

implemented).

In contradiction to the theoretical model, where relations are mathematical

sets, SQL treats them as collections that may contain duplicates (see [LaLo95]). Con-

sequently a tuple in SQL does not have an identity like a node in an XML

document. It may fulfill a constraint, the uniqueness of some attributes values

within its collection (key constraint), though. Providing the values of this attributes

in an SQL statement enables us to select one single, ‘unique’ node from the accord-

ing set, but only as long as the underlying RDBMS ensures this constraint. An

approach must be able to map the uniqueness of XML elements to relational data to

support relative queries and thus navigation.

3.2 Choosing the Mapping

There are several possibilities to map relational data into an XML document.

Some are presented in more detail in Chapter 4. At this point, only two extreme

paradigms are presented. These are

a) The simulation of the relational structure with XML elements (Figure

3-1), using the XML tags only as delimiters for tables, rows, and col-

umns. The simulation does not contain metadata that goes beyond

what the database system probably knows about the data. The struc-

ture is flat, the minimal and maximal element nesting level is known to

be 3.

b) The representation of the data in terms of XML without any meta in-

formation on the original table and column structure (Figure 1-3).

6 A query like ./ancestor-or-self::*/descendant-or-self::* would select all nodes

within the current document starting from any arbitrary node of it.

 - 19 -

Instead, the representation is structured semantically and thus con-

tains metadata that would only reside in the application logic

otherwise.

Of course, any granularity of realizations in between those both paradigms is

possible. Perhaps one could think of the simulation combined with nested tables or

its row elements containing the columns as attributes. But this here is just to point

up the difference between both approaches.

<table name="COMPANY">
 <row>
 <column name="CID" datatype="int" primarykey="true">0</column>
 <column name="Name" datatype="varchar">FZI</column>
 </row>
</table>
<table name="DIVISION">
 <row>
 <column name="DID" datatype="int" primarykey="true">0</column>
 <column name="Company" datatype="int" keyreftab="COMPANY"
 keyrefcol=’CID’>0</column>
 <column name="Name" datatype="varchar">DBS</column>
 </row>
 <row>
 <column name="DID" datatype="int" primarykey="true">1</column>
 <column name="Company" datatype="int" keyreftab="COMPANY"
 keyrefcol=’CID’>0</column>
 <column name="Name" datatype="varchar">Prost</column>
 </row>
</table>
<table name="EMPLOYEE">
 <row>
 <column name="EID" datatype="int" primarykey="true">0</column>
 <column name="Division" datatype="int" keyreftab="DIVISION"
 keyrefcol=’DID’>0</column>
 <column name="Boss" datatype="int" keyreftab="EMPLOYEE"
 keyrefcol=’EID’></column>
 <column name="Name" datatype="varchar">Lockemann</column>
 </row>
 <row>
 <column name="EID" datatype="int" primarykey="true">1</column>
 <column name="Division" datatype="int" keyreftab="DIVISION"
 keyrefcol=’DID’>0</column>
 <column name="Boss" datatype="int" keyreftab="EMPLOYEE"
 keyrefcol=’EID’></column>
 <column name="Name" datatype="varchar">Kazakos</column>
 </row>
 <row>
 <column name="EID" datatype="int" primarykey="true">2</column>
 <column name="Division" datatype="int" keyreftab="DIVISION"
 keyrefcol=’DID’>0</column>
 <column name="Boss" datatype="int" keyreftab="EMPLOYEE"
 keyrefcol=’EID’></column>
 <column name="Name" datatype="varchar">Valikov</column>
 </row>
</table>

Figure 3-1 An XML document simulating relational database conten t

According to the above example a query for a company’s name that has a divi-

sion named ‘DBS’ would look like Figure 3-2 as XPath expression for the first

mapping and like Figure 3-3 for the second one. Even though the query in Figure

3-2 is structurally much closer to the desired SQL query (Figure 3-4) and thus

probably simpler to translate, probably any user would prefer to use the query from

Figure 3-3. It is much easier to understand, hence easier to create and to debug

since it is by far closer to a real XPath expressions over ‘normal’ XML documents.

 - 20 -

/table[@name=’COMPANY’]/row[column[@name=’CID’]=/table[@name=’DIVISION’]/row[col
umn[@name=’Name’]=’DBS’]/column[@name=’Company’]]/column[@name=’Name’]

Figure 3-2 Example XPath query for a simulat ng documen i t

/company[division/@name=’DBS’]/@name

Figure 3-3 Example XPath query for a representing documen t

SELECT c.Name
FROM COMPANY c, DIVISION d
WHERE d.Company=c.CID
AND d.Name=’DBS’

Figure 3-4 Translated SQL query

For this reason the repre entation has been chosen as the desired structure of

the XML view onto the relational world. Consequently tables are represented as

elements and their columns as their attributes. Node types other than elements

and attributes do not occur in this view. Since attributes need to be atomic types,

we also expect the columns to contain values of atomic types. This is a deliberate

restriction for the simplicity of the model.

s

3.3 Returned Results

All approaches that will be investigated in chapter 4 have one thing in com-

mon: they return a textual XML representation of the queries results. This is a

main difference between them and our new approach. We propose instead to return

a proxy-object representation as specified in Section 5.1 for several reasons. The

advantages of a virtual approach in contradiction to the materialization of the re-

sults embrace:

• Probably the results will not be stored as XML files. But further proc-

essing requires an additional parsing step and building of an object tree

to reverse the previous serialization.

• Serialization may become a problem for huge result tree fragments (i.e.

if the root node is part of it). To only serialize parts of it is arbitrary,

since perspicuous borders can not be found.

• Support for relative queries can only be realized manually by the aid of

attributes, known to be unique. Further on, multiple occurrences of

elements are absolutely prohibited to be able to find a node(-type)

again. But having one element occur more than once may have some

advantages in searching or iterating through them (see section 5.2).

• If serialization is required, it can still be done afterwards. The result

object model just has to provide basic navigation functions for the naïve

 - 21 -

approach. Also other, optimized approaches for this task may be util-

ized without interfering with the rest of this thesis.

• Consistency is easier to achieve (see section 3.4).

3.4 Consistency

Consistency is an essential feature of all kinds of database systems. So even if

this is not the main theme of this thesis, at least the aspect of the transactional

borders is worth being considered.

Though we only consider read operations here, we need transactions, since

even if we only read, dirty reads, non-repeatable reads, or phantom reads are still

possible. We want to be able to leave the decision to the user, what he wants to al-

low.

Unfortunately XML solutions do not provide transaction support per se (in-

deed, normal XML solutions do not need to), so we have to find a way to circumvent

this drawback. Since we do not want to extend the standards with proprietary con-

structs, we have to handle them internally.

According to a basic SQL statement, which in fact is an atomic transaction, we

could expect one XPath query to also react like an atomic transaction, disregarding

how many sub queries our query processor really has to evaluate against the rela-

tional database system. Thus we must start a transaction before putting a first

SQL sub query and commit it after the last SQL sub query that belongs to one

XPath query. The decision whether or not dirty, non-repeatable, or phantom reads

are allowed within this transaction, can then be left to the user configuring the un-

derlying RDBMS.

The next thing we need to take into account is the result of a query. Ignoring

that it must be any kind of set with one arbitrary number of elements for the mo-

ment7, we need to pay attention to the possible types of those elements. Such an

element might be like a pointer into the database system8, pointing to the informa-

tion item it represents. Alternatively, it could be the root of a materialized copy of

the whole result fragment tree. Besides performance and system requirements,

consistency is an interesting issue here.

7 This just multiplies the problem, but does not influence the problem itself.
8 To be platform independent, ‘pointer’ refers to a SELECT data FROM table WHERE

keycolumn=value statement, thus the pointer consists of a table name, one (or more for
combined keys) key columns and as many values to assign to these columns to uniquely se-
lect a row, and a column name selecting the specific data within that row.

 - 22 -

It is obvious that it is much more simple to keep the information consistent, if

there is only one pointer to the information item which is evaluated every time the

value is accessed and no copies have to be managed. But even in this case, consis-

tency might become a problem! Though we easily can find out if the information

item itself still exists in the database9, we do not know whether or not the virtual

node representing that information still exists by simply following that pointer. Fol-

lowing it can lead us to a node that either might have moved to a different position

in the virtual document, possibly not fulfilling its original XPath query conditions

any more. It may also lead us to a node that does not even exist any more in the

virtual document.10

If a virtual node is likely to move or to be deleted before or while being proc-

essed, there are two workarounds: (a) we could expand the transaction borders to

include the processing after the querying, or (b) we could save extra information

along with the pointer, at least describing the structural position or better the

whole XPath query leading to this node.

The first method has definitely lower costs to fetch the information item itself

(probably a simple SELECT * FROM table WHERE rowPointerCondition), while

the second one might require to reapply a complex query containing multiple table

joins. The disadvantage of the first method is the costs of a longer transaction, es-

pecially if it demands serializability. Thus a trade off has to be found between the

costs of a longer transaction and the costs of a re-execution of (parts of) the query. If

the result nodes are directly processed and afterwards discarded, method (a) should

certainly be preferred. If the result nodes are to be stored and processed later,

method (b) should be better. To decide which method to choose, a timer could be

implemented that is reset by any access to an element (getParent(), getChildren(),

getValue(), etc.) and that closes the transaction once the timer has expired. After

the transaction has been closed, an access to the element must use method (b) to

ensure consistency. Then again, the transaction could be held open until the timer

expires.

Now that we recognized that it is not too easy to keep one single information

item consistent, we can allow ourselves to assert that it does not make sense to

keep a whole in-memory copy of a document fragment consistent with the database.

The only thing we can demand here is that at least the ‘snapshot’ is a consistent

image of the underlying database. Thus the procedure of taking that snapshot has

9 The item is no more existent, if the ‘pointer’ does not select anything.
10 For instance if the information item itself is still in the database but the information

item representing the parent node has been deleted.

 - 23 -

to be within a transaction with the querying. For a huge result tree fragment, the

costs of this transaction can be tremendous.

As a result of the previous deliberations, we can say at least the querying proc-

ess has to be transaction save. How far we need to extend the transaction, depends

on the result we want to return.

 - 24 -

4 State of the Art

This Chapter contains some insights on related work. The three major data-

base systems provide a way to create materialized XML views or relational data.

They and some other approaches shall here be compared to this thesis’ proposals.

4.1 Microsoft SQL Server 2000 XPath Querying

Microsoft SQL Server 2000 has one of the best currently available implementa-

tions for querying relational data via XPath. It provides three access methods

through two different channels to obtain relational data as XML results. The first

channel is ADO (Advanced Data Objects), Microsoft’s standard high level API for

database access. The second channel is HTTP, where the queries are passed to the

server via URL’s and GET or POST. But more interesting than the channels are

the three different access methods: via Transact-SQL, via Templates, and via

XPath queries. All three access methods act alike for both channels, you may use

the same query format, the returned results are equal.

4.1.1 Retrieving XML Data via Transact-SQL

Probably the simplest way to retrieve XML data is using Transact-SQL, Micro-

soft’s answer to Oracle’s well known PL-SQL. The simplest, since it does not

require knowledge of any concepts, does not need explicit schema definitions, and it

can be done by just appending a FOR XML AUTO clause to the end of a normal SQL

SELECT statement. A pretty good explanation of the syntax, as well as of the modes

of such a statement (AUTO, RAW, EXPLICIT) and some examples can be found in [Malc01].

The disadvantage of this easy to use approach to query relational data via Trans-

act-SQL is the fast growing complexity of queries that produce reasonably

structured results.

4.1.2 Retrieving XML Data via Templates

The second possibility to obtain an XML document containing relational data

from the SQL Server 2000 is the querying via templates. It is not really an own ac-

cess method, since it relies on either the Transact-SQL or the XPath methods. But

it allows to embrace multiple queries of either type (even mixed) to return as one

 - 25 -

result document. Also the parameterization of the query becomes simpler, since the

parameters are explicitly defined within the template and not coded within the

URL.

There is one interesting note in [Isem01] (Chapter 13) concerning multiple que-

ries within one template. It shall here be quoted, since it endorses our deliberations

from Section 3.4 that we expect one XPath query to behave as one transaction:

Each <sql:query> or <sql:XPath-query> represents a separate transaction.
There ore, if you have multiple <sql:query> or <sql:XPath-query> tags in the
template11, and if one fails, the oth rs will proceed.

f
e

4.1.3 Retrieving XML data via XPath

Since the access methods via Transact-SQL and templates differ quite a lot

from what we are doing, we will not take a closer lock onto them. A detailed de-

scription can be found in [Malc01] and in [Isem01]. Instead, we will dwell on the third

method, since its concepts are really near to this approach.

To access the stored relational data via XPath, also an XML view onto the da-

tabase is utilized. The definition of such a view is called annotated XML-Data
Reduced Schemas (XDR), sometimes also referred to as mapping schema. This cor-

responds to what we call the Setup (see Section 5.5). In fact, the use of an XDR as

source for the Setup seems imaginable.

To pose an XPath query against an SQL Server 2000, you can specify it directly

in an URL as shown in Figure 4-1, for instance. In this example URL, not only the

XPath query (/Customer[@CustomerID=’ALFKI’]) is coded, but also several other pa-

rameters telling the http server with the name IISServer how to process it. First,

the virtual directory nwind is selected. Using the ‘IIS Virtual Directory Management

for SQL Server Utility’, the administrator created this virtual directory to allow ac-

cess to a certain database within the SQL Server 2000. The next part of the path

expression, the virtual name useSchema, is used to tell the server that the following

file, schemafile.xml, contains an annotated XML-Data Reduced Schema that shall

be used in conjunction with the appended XPath query.

http://IISServer/nwind/useSchema/schemafile.xml/Customer[@CustomerID=”ALFKI”]

Figure 4-1 Example XPath Query u ing HTTP s

11 Templates are XML documents

 - 26 -

In conjunction with the mapped schema from Figure 4-2, the returned result

might look like Figure 4-3. This example has been assorted from [Isem01]. More ex-

amples, specifications and comments can be found there.

<?xml version=”1.0” ?>
<Schema xmlns=“urn:schemas-microsoft-com:xml-data“
 xmlns:dt=“ urn:schemas-microsoft-com:datatypes“
 xmlns:sql=“ urn:schemas-microsoft-com:xml-sql“>
<ElementType name=“Customer“ sql:relation=“Customers“>
 <AttributeType name=“CustomerID“ />
 <AttributeType name=“Company“ />
 <attribute type=“CustomerID“ />
 <attribute type=“Company“ />
</ElementType>
</Schema>

Figure 4-2 Example annotated XML-Data Reduced Schema

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
 <Customer CustomerID=”ALFKI” Company=”Alfreds Futterkiste” />
</ROOT>

Figure 4-3 Result of the example query

4.1.4 Method: The EXPLICIT Mode

Unfortunately there is no detailed description about the steps the SQL Server

2000 does to evaluate XPath queries against the relational data. In order to better

understand the process, we used the Query Profiler shipped with the SQL Server

2000. The Query Profiler lets you watch all connections established to the database

engine and queries that are issued against it. From the output of the profiler we

could figure out, that Microsoft uses a three step process to handle XPath queries

as shown in Figure 4-4.

When you pose an XPath query, one single SQL query is issued and processed

within the relational engine. It is a query using the so-called EXPLICIT mode,

which is very well documented in [MSDN01]. The additional FOR XML EXPLICIT direc-

tive at the end of the SELECT statement tells the output formatter not to return

table data but to use the metadata in the column names (!) to format an XML out-

put.

XPath Query Query
Translator

SQL Query

annotated XML-Data
Reduced Schema

Output
Formatter B

XML Output

Output
Formatter A

Query
Translator

Table Output

„FOR XML EXPLICIT“

Figure 4-4 Microsoft’s three step process

 - 27 -

Without the FOR XML EXPLICIT directive, the ‘universal table’ (that is how Micro-

soft calls it) is returned. It contains one tuple for every element that will be in the

resulting XML document. Each tuple consists of the total number of attributes in

the resulting XML document (+2) values, approximately (+some hidden columns).

Almost all of those values are NULL, except those of the attributes of the element a

tuple is representing. We can get an impression of the universal table from Figure

4-5, which shows the universal table for the query /company[@name=’FZI’] applied to

the view defined through the XDR from Figure 4-6. The intermediate SQL query

can be found in Appendix C.
TAG parent company!1!name company!1!ID!hide division!2!name division!2!ID!hide employee!3!name

1 0 FZI 1 NULL NULL NULL
2 1 NULL 1 DBS 1 NULL
3 2 NULL 1 NULL 1 P.C. Lockemann
3 2 NULL 1 NULL 1 Wassili Kazakos
3 2 NULL 1 NULL 1 Alexey Valikov
3 2 NULL 1 NULL 1 Andreas Schmidt
2 1 NULL 1 PROST 2 NULL
3 2 NULL 1 NULL 2 Gerhard Goos
3 2 NULL 1 NULL 2 Benedikt Schulz
3 2 NULL 1 NULL 2 Thomas Genßler
2 1 NULL 1 SWT 3 NULL
3 2 NULL 1 NULL 3 Walter F. Tichy
3 2 NULL 1 NULL 3 Andreas Judt
3 2 NULL 1 NULL 3 Alexander Christoph
3 2 NULL 1 NULL 3 James J. Hunt

Figure 4-5 Universal Table for /company[@name=’FZI’]

<?xml version="1.0"?>
<Schema name="DemoSchemaAnn"
 xmlns="urn:schemas-microsoft-com:xml-data"
 xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType name="company" sql:relation="Company">
 <AttributeType name="name"/>
 <attribute type="name" sql:field="Name"/>
 <element type="division">
 <sql:relationship key-relation="Company"
 key="ID"
 foreign-relation="Division"
 foreign-key="Company"/>
 </element>
</ElementType>
<ElementType name="division" sql:relation="Division">
 <AttributeType name="name"/>
 <attribute type="name" sql:field="Name"/>
 <element type="employee">
 <sql:relationship key-relation="Division"
 key="ID"
 foreign-relation="Employee"
 foreign-key="Division"/>
 </element>
</ElementType>
<ElementType name="employee" sql:relation="Employee">
 <AttributeType name="name"/>
 <attribute type="name" sql:field="Name"/>
</ElementType>
</Schema>

Figure 4-6 XDR for the example from Section 1.2

The concept of the universal table seems suitable for serializing a document

fragment. It has a clear, defined structure with limited complexity and is able to

carry its metadata through the SQL statement to the serializer (allows a sensible

encapsulation of the query translator and the serializer at the cost of little bulkier

column names).

 - 28 -

“The universal table r wset (containing all data and meta data) is scanned
one row at a time, in a forward-only manner, producing the r sulting XML tree.
To yield the proper XML docum nt hierarchy, it is also impor ant to specify the
order of rows in the universal table. This is achi ved by using the ORDER BY
clause in the query.” (source: [MSDN01])

o
e

e t
 e

Unfortunately, a universal table can only be obtained using the UNION con-

struct, which causes problems in optimizing the query. Applied conditions as well

as joins have to be recalculated multiple times, if the optimizer is not able to detect

(and make use of) common sub expressions (see SQL query text from Appendix C).

4.1.5 Distinctions of Approaches

Besides platform dependence, there are other distinctions between Microsoft’s

approach and ours. The view concept underlies both approaches to map XPath se-

lectable elements and attributes to tables and columns. Unfortunately, Microsoft

does not provide access to this view. Instead of benefiting of all the advantages of it

(including relative queries and navigateable results), SQL Server 2000 uses the

meta information for query translation and result formatting, only. The result is

provided as XML text (as a string) instead of returning a pointer to a virtual node

like we do.

The drawback of the return of the result in text form is, that the returned XML

document has to be filled out completely, it has to be deep-materialized. Every node

of the result tree fragment, up to the most distant leaf, has to be obtained from the

tables, resulting in deeply structured and huge materialized documents for more

complex XDR’s. According to 5.5.3, we encourage the user to nest elements wher-

ever this is possible, since it simplifies the XPath queries required to express his

desired result. With the Microsoft approach, the user is rather discouraged to do so

for the fear of performance problems. As a consequence, typically XDR’s are defined

with a very limited nesting level.

The broadness of the defined document is usually not as important, as every

step narrows down the volume of result nodes by an order of magnitude, since nei-

ther ascendant, ascendant-or-self, descendant, and descendant-or-self axes, the

selection of the root node, the wildcard node test “*” (for example, child::*), nor the

union operator “|” are supported. (A detailed description of what is supported an

what not can be found in [Isem01].) It is impossible to select more than one certain

kind of nodes from their virtual document. This enforces the selectiveness of que-

ries to be comparatively high and thus reduces the overall amount of data to return

 - 29 -

at the cost of compatibility and comfort. Of course we do not know, whether or not

that is reason for these XPath features not to be supported, but it seems very likely.

A workaround to query a top level element without having all its nested ele-

ments materialized (for instance since we do not need the information contained in

there) is to redefine the top level element with an other name and without its

nested elements for an other time. This could be done for every nesting level or at

least for those, known to be required by the application. Again, this requires the

applications needs to be known before the view definition. Alternatively, the user

could abandon the comfort of querying for nested elements (remember: a design cri-

teria for XPath) and use links as described in 5.5.3.

4.2 IBM (XPERANTO/XTABLES)

Even though IBM’s DB2 offers XML support via their DB2 XML Extender12,

we will focus on an approach from the IBM Almaden Research Center in San Jose,

since its functionality is much closer to our aims. The DB2 extender offers the stor-

age and querying of XML documents in single columns via XMLCLOBs, XMLVARCHARs

and XMLFiles. Further on, it allows shredding and (re-) composition of XML data

from or into relational tables. But in the latter case, no XPath (or comparable) que-

rying is available.

XPERANTO (see [CFI+00]) might be considered as the mother-of-all approaches

on this field. Every other paper mentions XPERANTO, and we can also not miss

out this important publication.

Basically, XPERANTO also embodies a middleware to connect the worlds of

XML and of relational databases by processing a native XML query language,

translating the queries to XML and returning the resulting relational table data as

XML data. In contradiction to our support for XPath, XPERANTO uses XML-QL

(see [DeFF99]) as querying language. The obtained results are tagged and returned

as strings, the disadvantages of this approach have already been elucidated in Sec-

tion 3.3 and 4.1.5. XPERANTO uses the so called sorted oute union approach for

materializing the results (see [SSB+00] for details).

r

The translation process of XPERANTO is on a very rough level equal to ours:

first the original query language is parsed and translated to an intermediate query

representation. What we call the Expression (see Section 5.6) is called XQGM (XML

Query Graph Model), an extension to DB2’s QGM.

12 see http://www-3.ibm.com/software/data/db2/extenders/xmlext/index.html

 - 30 -

http://www-3.ibm.com/software/data/db2/extenders/xmlext/index.html

Since the two original papers (see [CFI+00] and [CKS+00]) on XPERANTO are

relatively rare, the interested has to resort to [SKS+01], [SSB+00], or [Shan01] for more

information. There is also an other paper concerning XTABLES (see [FFL+02]),

which seems to be the new name for XPERANTO concepts, since it covers the same

content, it is available at the IBM XPERANTO web sites and it is of newer date

(March 2002). Hence, the following details have been taken from [SKS+01] and

[FFL+02].

The approach provides a Default XML View which maps every table to an ele-

ment with the tag name of the element equal to the table name it represents.

Beyond these elements, row elements are listed, each representing one tuple from

the table. The row element again contains the column values as sub elements, these

sub elements carry the name of the column they correspond to. The topmost ele-

ment has the tag name db. The structure of this view corresponds to what we called

the simulation (see Section 3.2).

Fortunately, the user of XTABLES does not have to labor (see Figure 3-2 for a

query on a simulating document) with this view, at least not in an advanced devel-

opment stage. XTABLES in contradiction to XPERANTO supports XQuery as

querying language. A query in this language also creates a view on the queried

data, the data is returned in the thus defined structure. These views are stored

within XTABLES and may be referenced by future queries. That way, a kind of

view repository emerges. This is shown in Figure 4-7.

XTABLES

User-Defined
View

Default XML View

R-DBMS

XQuery

XQuery View
Definition

Default Mapping

Figure 4-7 XTABLES Query P ocessing Architecture r

The translation process, described in [Shan01], is a lot more complex than ours.

According to a PowerPoint presentation of Javel Shanmugasundaram found in the

web13, the translation of a query about 12 tables takes about 200 ms (pure transla-

tion time, not the processing of the SQL query). This probably dues to the

 - 31 -

13 see http://www.cs.cornell.edu/People/jai/presentations/QueryingXMLViews.ppt

http://www.cs.cornell.edu/People/jai/presentations/QueryingXMLViews.ppt

additional features like view definition, materialization, and reuse. In contradic-

tion, we applied certain, not very limiting conventions, allowing us to provide a

much simpler but still useful solution.

4.3 Jain/Mahajan/Suciu (University of Washington)

Sushuant Jain, Ratul Mahajan, and Daniel Suciu presented an interesting ap-

proach on the 11th WWW Conference in Honolulu in May, 2002. Their idea was to

translate a complete XSLT style sheet into corresponding SQL statements to return

relational table data in XML form (see [JaMS02]). The advantage over a pure XPath

querying approach is to overcome the problem, that no assembled results are pre-

sentable within a single query. This is also the main animadversion of [SKS+01] on

XPath approaches (especially the Microsoft approach): ‘XPath cannot specify
joins’14.

The supported fragment of the XSLT language is very limited though. And also

the XPath support does not transcend Microsoft’s approach by far, yet wildcards

and the union operator are supported. This can be read out of their grammar, found

at their projects homepage (see [JaMS02], a copy of the grammar can be found in

Appendix E).

A problem involved by their way of processing is the need for the optimization

of the generated SQL queries, especially nested, correlated IN sub queries. Another

optimization they introduce are QTree Reductions (QTree is the name for one of

their internal query representations, it is kind of a mixture of our Path Tracing

Graph (see Section 5.7) and our Expression (see Section 5.6)). They apply shortcuts

to ‘long path with unreferenced int mediate nodes’ ([JaMS02], Section 5.3), which

means that ‘no intermediate node in the path is referred to by any other part of the
QTree [remember, it also contains conditions] except the immediate child and par-
ent of that node on that path’. But this may lead to incorrect results (see Section

5.4.4), if it is not done very carefully. Thus such optimizations are beyond our scope

(see Section 5.4.3.1).

er

14 By the way, this statement as it is, is incorrect: XPath can very well specify joins

within predicates, it just can not assemble output from multiple sources.

 - 32 -

4.4 Other Approaches

The following approaches are not observed as accurate, since their aim differs

more or less from ours. But since they are also loosely related to our theme, we will

have a quick look onto them.

4.4.1 XRel

The XRel approach (see [YASU01]) tries to find a way of storing and retrieving

XML documents in and from relational database systems. Even though we were not

bound to the task of storing the documents, XRel was the approach we were origi-

nating from, since it bases on a very simple and yet efficient idea of how to process

XPath queries.

The process of querying is bound to the way the data is stored, of course.

[YASU01] discerns two possible ways for storing XML documents in relational data-

bases: the model-mapping approach and the structure-mapping approach. In the

former, the relational database schema represents the constructs of the XML

document model. There may, for instance be a table for attributes, a table for ele-

ments and a table for assigning attributes to elements and elements to their parent

elements. In the later approach, the database schema is based on the XML docu-

ment structure, expressible by a DTD (Document Type Definition) or an XML

Schema (http://www.w3.org/XML/Schema). This is much closer to the terms of real

relational database but is liable to the limitation, that only documents complying to

the once modeled schema can be stored. While [YASU01] sticks to the model-mapping

approach due to its flexibility, we rather comply with the structure-mapping ap-

proach, since we only retrieve existing data that is very likely not stored in terms of

the XML document model. Further on, the structure-mapping approach promises

performance advantages over the model-mapping approach, since it is able to util-

ize classical optimization techniques.

In contradiction to our approach, the XPath support in XRel is limited to what

is called XPathCore in [YASU01]. There is no support for ancestor axes (parent,

ancestor, ancestor-or-self), the self axis or preceding and following axes (preceding,

preceding-sibling, following, following-sibling). It is described as

“…basically the int rsection of the nonterminal symbol PathExpr in XPath
1.0 [W3C99] and the nonterminal symbol PathExpr in Quilt [ChRF00]”

 e

This very restricted set of axes allows the usage of a table storing materialized

string representations for every existing path expression of the stored documents.

 - 33 -

http://www.w3.org/XML/Schema

Those strings can be searched via SQL-92 compliant LIKE (see [Date93]) for the

matching path expression of a posed query. A great advantage of this approach is

that queries making heavy use of the descendant-or-self axis (via //) do not require

join operations proportional to the length of the path.

For our approach, this is not applicable, since only providing a view, we can not

take the responsibility of keeping such a table consistent with the rest of the data-

base without heavily interfering with the original applications via triggers. The

problem is that a parent node might be deleted, while its child is rerouted to an

other parent node. See also Section 5.4.3.1 on this.

4.4.2 Xalan (Apache)

The Java Development Kit (JDK) 1.4 comes with a build in XSLT/XPath proc-

essor which is the one from the Apache Software Foundation

(http://www.apache.org). This product that is also available as a separate download

as well as for C++ (see http://xml.apache.org/) offers a way to access relational da-

tabase data within an XSLT style sheet. But this is not done via a view, it is

realized utilizing the concept of extension functions (see [Kay01], Chapter 8). The

procedure for the user is shown in Figure 4-8.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 version="1.0"
 xmlns:sql="org.apache.xalan.lib.sql.XConnection"
 extension-element-prefixes="sql">
...
 <xsl:param name="query" select="'SELECT * FROM import1'"/>
...
 <!-- 1. Make the connection -->
 <xsl:variable name="products"
 select = "sql:new('org.enhydra.instantdb.jdbc.idbDriver',
 'jdbc:idb:D:\instantdb\Examples\sample.prp')"/>
...
 <!--2. Execute the query -->
 <xsl:variable name="table" select='sql:query($products, $query)'/>
...
 <!-- Get column-label attribute from each column-header-->
 <xsl:for-each select="$table/sql/metadata/column-header">
 <xsl:value-of select="@column-label"/>
 </xsl:for-each>
...
 <xsl:apply-templates select="$table/sql/row-set/row"/>
...
 <!-- 3. Close the connection -->
 <xsl:value-of select="sql:close($products)"/>
...
</xsl:stylesheet>

Figure 4-8 Obtaining relational data in Xalan

4.4.3 Oracle

There is no direct way in Oracle 9i Database to access relational data via

XPath. Oracles solution for using relational table data in XML-based components is

 - 34 -

http://www.apache.org/
http://xml.apache.org/
http://www.w3.org/1999/XSL/Transform

called XSQL. Standard SQL query results are converted to XML output via the

XML-SQL Utility (XSU), nesting is achieved through structured columns15. Thus

obtained results may then be parsed and processed with the accompanying (or any

other) XSLTransformer using standard XPath queries.

4.4.4 ROLEX

ROLEX (see [BoKN01]) addresses issues required to support high-performance

navigation of XML views of relational data. Their idea of providing a virtual XML

document through standard interfaces like DOM and SAX over relational database

table data is close to our concept of the virtual document.

ROLEX has no real support for querying. Instead, the defined views may be

parameterizes as it is called in [BoKN01]. But their main focus is rather the caching

of heavily used data in between the relational tables and the virtual document they

provide, to allow quick navigation through the tree. For these purposes they rely on

the DataBlitz ™ Main-Memory Database System (see [BBG+99]). Its trigger mecha-

nisms are used to keep materialized portions of the virtual document up-to-date, or

to invalidate sections of the materialized tree. This is indeed an improvement in

comparison with the caching of materialized XML documents in a business applica-

tion. The techniques described in conjunction with ROLEX, especially in the paper

that will be published on VLDB in August 2002, [BGK+02], might be worth consider-

ing for the improvement of our own virtual document.

4.5 Summary

Summing up, we can state that the combination of an XPath querying in con-

junction with a virtual document is unique until today. An even better digest might

be given by the table from Figure 4-9.

an
ch

es
to

r
(o

r-
se

lf
)

at
tr

ib
u
te

ch
ild

d
es

ce
n
d
an

t
(o

r-
se

lf

fo
llo

w
in

g
 (

si
b
lin

g
)

n
am

es
p
ac

e

p
ar

en
t

p
re

ce
d
in

g
 (

si
b
lin

g
)

se
lf

MS SQL Server XPath yes yes no no n y y n n n y n y no no no Text
X2S XPath yes yes no yes y y y y n n y n y yes yes yes Pointer
XRel XPathCore yes no yes no n y y n n n n n n no no Text
Jain et al. XSLT yes yes no no n n y n n n y n y no yes Text
XPERANTO XQuery yes yes no no Text
Oracle 9i SQL no yes - no - - - - - - - - - - - - (Text)
Xalan SQL no yes - no - - - - - - - - - - - - (Text)
ROLEX (none) yes yes yes - - - - - - - - - - - - (Pointer)

Access to
relational
Table Data

Navigation
XML View Features
External
Difinition

XPath Features
Support
for
UNION
("|")

"-" = not applicable, [blank] = undocumented

Relative
Queries

Cross
Product
Queries

Result
Approach Query

Language AxesDocument
Order

 - 35 -

Figure 4-9 Summary of Comparison of Approaches

15 for details see http://otn.oracle.com/docs/tech/xml/xdk_java/doc_library/Production9i/doc/java/xsql/readme.html#ID3260

http://otn.oracle.com/docs/tech/xml/xdk_java/doc_library/Production9i/doc/java/xsql/readme.html

 - 36 -

5 Design & Realization

We propose a proxy-based solution to achieve the goal. The core algorithm is

relatively close to the naïve solution, thus easy to understand and to implement. To

archive this, we need a powerful object model providing the required operations.

The important operations will be presented in detail, the remaining are obvious and

easy to implement. Thus for the conciseness, we are not naming them explicitly,

here.

5.1 Virtual DOM

The approach directly connects two existing, fairly well know and approved

worlds: relational databases and XML technology. Each of both has a standard rep-

resentation within the Java framework which we exemplarily choose here. Other

frameworks provide similar constructs. The connection between Java and database

systems is established by a technology named JDBC (Java Database Connectivity).

XML on the other hand may be processed by JAXP (Java API for XML Processing).

That API contains two access methods: through SAX (Simple API for XML) or

through DOM (Document Object Model). While the first is an event driven interface

providing a mechanism for “callback” notifications to application’s code, the latter is

the W3C DOM Working Group’s set of interfaces to access a more or less static in

memory object representation of an XML documents elements. We choose to utilize

DOM since its vocabulary of concepts is closer to the classical notion of database

views.

In DOM every attribute, every element, all text nodes and all items that may

else be contained in an XML document are represented by an individual object of

the type ‘node’. These nodes are connected to each other by functions allowing basic

navigation up and down the object tree. As a result to this design, a naïve imple-

mentation requires the whole document to fit into a computers main memory to be

processed efficiently.

As mentioned earlier, a possible way to fulfill our task is to build the document

by coping the content of our view from the database into an XML document. After-

wards, we could process the XPath queries with optimized and proven existing

tools. For a naïve DOM implementation, we had to copy all the databases content

into one computer’s memory (see Figure 5-1). This would mean a heavy system

load, especially for large systems with several gigabytes of data. But since we pro-

 - 37 -

vide an XML view onto a relational database, we must be able to map all the con-

tent of that database into our document. Thus we need a work-around to only keep

a few elements in memory but allowing unhindered navigation and of course query-

ing throughout the whole content, nonetheless.

Query
Processor

Virtual XML
Document

RDBMS

1

2

Figure 5-1 Naïve approach

We call the concept to circumvent this drawback virtual DOM. The idea is to

keep a template document in memory. It only represents the structure of our docu-

ment. Its elements are treated as proxies for zero, one, or many instances,

depending on the data stored in the relational system. They can also be considered

as schema elements or as ‘classes’ of different instances, depending on the point of

view.

Each node within the template document stores a ‘pointer’ into the relational

database16. But following such a pointer does not lead to one distinct piece of infor-

mation, it selects a set (containing 0, 1, or multiple elements) of information items.

Obtaining these from the database, we can create instances of those classes. These

instances, in turn are the nodes of the virtual DOM and a 1:1 representation of da-

tabase information items.

Query
Processor

Virtual XML
Document

RDBMS

1
2

4
3

5
6

8
7

9
10

12
11

Figure 5-2 Virtual document as proxy for da aba e access functions, i.e. naviga ion

 - 38 -

t s t

16 A pointer in this case refers to a certain column and is representable by the columns

name and the containing tables name

Now we could already process XPath queries against such this document (see

Figure 5-2). This would mean to obtain every node from the database that an XPath

query touches. But most of those nodes are discarded since they literally are a step

on the path to the result, only. To save resources, we only want to output data from

the database we probably will need for further processing. The result nodes are

part of it, nodes that only occurred in the XPath query to express conditions are

not. Thus, we only want to create instances for the result nodes. The other nodes

should be processed via their proxies and within the relational database system

(see Figure 5-3). This mechanism can only be provided for queries, of course. A fol-

lowing navigation through the virtual document by the standard org.w3c.dom

navigation functions is only realizable via the proxy method illustrated in Figure

5-2.

Query
Processor

Virtual XML
Document RDBMS

1

2

3
4

Figure 5-3 Query processing within the frontiers of the RDBMS

More formally spoken, Figure 5-2 represents method A in Figure 5-4, Figure

5-3 represents method B, whereas DB and DB’ mark up the states of the original

(relational) database and VDB and VDB’ mark up the states of the view (the virtual

document here). For a read-only approach, ‘state’ refers to what information item(s)

we are currently looking at. An operation o of a user, this can only be a navigation

in read-only case, must be translated into an operation p on the original database,

so that o(v(DB))=v(p(DB)), to achieve reasonable performance boosts from enabling

the underlying database engine to use its optimizing techniques.

DB

VDB

v v

o

p

VDB’

DB’

A

DB

VDB

v v

o

p

VDB’

DB’

B

Figure 5-4 Operating on the view and operating on the model

 - 39 -

Apart from the traffic savings, the memory savings within the client computer

evaluating the XPath expression are substantial. While keeping all existing in-

stances containing a pointer17 to their content would mean a compression ration of

1:10018, keeping only the classes means a compression ratio of 1:1,000 or more19. If

the data is of an other type than VARCHAR, maybe INT or DATE, the overhead for

a pointer in every instance may even lead to negative savings or in other words in-

creased memory consumption.

The third drawback of keeping the instances is the problem of keeping them

consistent with the database. But this has already been discussed in section 3.4.

5.2 Extended Example

In this section, we extend the example from section 1.2. Now we can addition-

ally save products of our companies and takers (customers) that may order them.

The resulting database structure can be seen in Figure 5-5, Figure 5-6 shows some

sample table data. The schema of the desired virtual document is shown in Figure

5-7, the resulting virtual document in Figure 5-8.

DID
Company

Division

Name

EID
Division

Employee

Boss
Name

Primary Key

Foreign Key Reference

CID
Name

Company

PID
Company

Product

Name
IID

Product

Item

OrderOID
Taker

Order

ReceiveDate
SendDate

TID
Name

Taker

Figure 5-5 The Extended Examples r lational schema e

17 A pointer in this case is a set of columns that form a key to a certain table, a set of as-

signed values, identifying a certain row and a column selector, selecting the distinct value
from the row. Such a pointer can be used to create a simple SELECT FROM WHERE statement to
obtain the desired data from the database.

18 Assuming the pointer to point to VARCHAR(200) data fields
19 Assuming the content to be VARCHAR(200) data fields and a representation of only

10 instances (i.e. 10 rows) per class.

 - 40 -

Figure 5-6 Some sample table data

ID Name ID Division Boss Name
1 FZI 1 1 P.C. Lockemann
2 Siemens 2 1 1 Wassili Kazakos

3 1 2 Alexey Valikov
4 1 2 Andreas Schmidt

ID Company Name 5 2 Gerhard Goos
1 1 DBS 6 2 5 Benedikt Schulz
2 1 PROST 7 2 6 Thomas Genßler
3 1 SWT 8 3 Walter F. Tichy
4 2 A&D AS IT 9 3 8 Andreas Judt
5 2 A&D AS PAS 10 3 9 Alexander Christoph

11 3 9 James J. Hunt
12 4 Alfred Schmit

T_Division

T_EmployeeT_Company

Figure 5-7 The document structure of the Extended Example

e
n

id

p
n

id

d
n

id

c
n

id

o r

id

s

t
n

id

R

R Virtual Root Node

c

n

ProxyElement Node

ProxyAttribute Node

e
n

id

e
n

id

e
n

id

Elements
c Company
d Division
e Employee
p Product
t Taker
o Order
i Item

Attributes
id Primary Key
n Name
r Receive Date
s Send Date
p Product (Ref. p.id)

i p

<company id=”1” name=”FZI”>
 <division id=”1” name=”DBS”>
 <employee id=”1” name=”P.C. Lockemann”>
 <employee id=”2” boss=”1” name=”Wassili Kazakos”/>
 <employee id=”3” boss=”2” name=”Alexey Valikov” />
 <employee id=”4” boss=”2” name=”Andreas Schmidt” />
 </employee>
 </employee>
 <employee id=”2” boss=”1” name=”Wassili Kazakos”>
 <employee id=”3” boss=”2” name=”Alexey Valikov” />
 <employee id=”4” boss=”2” name=”Andreas Schmidt” />
 </employee>
 <employee id=”3” boss=”2” name=”Alexey Valikov” />
 <employee id=”4” boss=”2” name=”Andreas Schmidt” />
 </division>
 <division id=”2” name=”PROST”>
 ...
 </division>
 ...
 <product id=”1” name=”NOKIS”/>
</company>
<company id=”2” name=”Siemens”>
 <division id=”5” name=”A&D AS IT”>
 <employee id=”16” name=”Alfred Schmit”/>
 </division>
 ...
</company>
<taker id=”1” name=”unknown organization”>

 - 41 -

 <order id=”1” receivedate=”October 2001” senddate=”somewhen in 2002”
 <item product=”1”/>
 </order>
</taker>
...

Figure 5-8 XML representation of the Extended Example

In the example in Figure 5-8, several persons occur multiple times in the vir-

tual document. This behavior is by design, since we do not want to restrict the user

in the way he treats recursive data. The drawback is, that the user will not be able

to select one distinct node from the virtual document by searching only for the key

attributes’ values. Instead we will receive a list of nodes. At first look, this may

seem to be a great limitation, but indeed, it is not. All these nodes will have identi-

cal data and within their structural position, they are unique and thus

distinguishable all over the virtual document. Further on, we can take the advan-

tage that it can be left to the user whether he likes to iterate through the nodes

flatly (employees by division) or whether he wants to search the hierarchical struc-

ture (employee hierarchy) deeply. We do not need to force the user to decide which

way he probably prefers and to provide a condition that will block the other one.

Both ways are possible without mutual interference. The flat enumeration can be

achieved by a simple query like Figure 5-9 (just without performing a deep search

afterwards), the hierarchical structures root nodes can be obtained with a query

like Figure 5-10.

/company/division[@name=’DBS’]/employee

Figure 5-9 XPath query obtaining a flat enumeration of employees

/company/division[@name=’DBS’]/employee[./employee]

Figure 5-10 XPath query obtaining only the ‘bosses’

5.3 The Basic Object Model

As already mentioned in Chapter 1, both XPath and SQL are descriptive query

languages. Consequently, if we use a subtle mapping that is close to a 1:1 relation

of the objects of both domains, the translation process is straightforward. Thus we

first try to find a representative for each XML term in the relational domain and

vice versa.

 - 42 -

ProxyElement

ValueRow

AttributeInstanceElementInstance

ColumnTable

ProxyAttribute

 user navigation

 user navigation

Data Type
compound simple

Schema

InstanceDomain

XML

RDB

Figure 5-11 The Ba ic Object Model s

In the relational world, four basic entities can be found. These are the table, its

rows and columns, and the values. Values can be found in each row at a certain po-

sition (column), thus rows (or ‘tuples’) are the container elements for values. Tables

are used to group tuples of the same type.

XML documents on the other hand are built from elements and attributes.20

They store the data. Though they bring their own structuring, there is a meta

structure, indeed. It is called Schema.21 It describes at which position new ‘records’

(attributes or elements) may be inserted or where existing ones might be found.

Now, comparing both domains, we see that both contain two data containers,

one for simple, noncomplex data-typed values, and one complex, containing the

simple ones. Further on, both contain a schema, describing where to add or where

to find data of a certain category. Thus, searching for a 1:1 mapping, we can find a

sensible interpretation for each object as shown in Figure 5-1122.

Fortunately, the user sees hardly anything of this. Once he has provided the

Setup (see section 5.4), he only sees a large virtual document as demanded in sec-

tion 5.1. He simply accesses DOM nodes and navigates through the document via

their functions.

20 Of course, also other constructs exist, but to keep things simple we stick to this state-

ment.
21 An explicit Schema is not required. If no explicit Schema is provided, the implicit

Schema, a subset of the explicit Schema, can be extracted from the document.
22 You may ask yourself why the XML Schema objects are called ‘proxy’. This is because

the proposed algorithm works on these (not on the instances) and calling them SchemaEle-
ment and SchemaAttributes or likewise made things very confusing.

 - 43 -

Framework Binding (i.e. org.w3c.dom Interface Implementation)

ProxyElement

ValueRow

AttributeInstanceElementInstance

ProxyAttribute

org.w3c.dom
Attribute

org.w3c.dom
Element

1

8

7

6

5

4

3

2

 user navigation

 user navigation

Figure 5-12 Navigation from an attribute to its containing element

Let’s say an XPath query returned an attribute node. Now, if we want to re-

trieve the containing element node, we would call the getElement() function in an

org.w3c.dom implementation. Since the document is virtual, neither the attribute

node has a direct reference to its containing element node, nor is this element node

even materialized due to the virtuality of the whole document. But for the sake of

object orientation, the following process can be hidden from the user ash shown in

Figure 5-12:

Starting from the attribute node (1), we can find the corresponding

AttributeInstance object (2).23 The AttributeInstance object itself contains two

pointers, one to its Schema element, the ProxyAttribute (3) and one to the Value ob-

ject (5), this AttributeInstance represents. From the ProxyAttribute, we can find out

the containing ProxyElement (4), and the Value object contains a reference to the

Row (6) it can be found in. Knowing the Row and the ProxyElement, we can create an

ElementInstance object (7), which corresponds to the element node (8) that ‘contains’

the original attribute node and thus will be returned as the function’s result.

23 Both, attribute node and AttributeInstance object could be represented by one ob-

ject. The separation is done to encapsulate the object model of this approach from a certain
DOM API.

 - 44 -

Framework Binding (i.e. org.w3c.dom Interface Implementation)

ProxyElement
(parent)

Table

Row

ElementInstance

org.w3c.dom
Element

8

7

6

5

4 3

 user navigation

ProxyElement
(child)

Table

Row

ElementInstance

org.w3c.dom
Element

σ9

11

10

12 1

2

Figure 5-13 Navigation from an element to its containing parent element

The navigation from a child element node to its parent element node (shown in

Figure 5-13) is a bit more complex since it requires a database access. The origin

element (1) has a corresponding ElementInstance (2). This ElementInstance has a cer-

tain ProxyElement (3) as Schema, for which indeed we can find a parent ProxyElement

(4). Both, parent and child represent each one Table element (5 and 6). The Join on

these two tables (7) represents the parent child relation of the ProxyElements.

Searching for a certain parents data, we only select those result rows (9) that com-

ply with the Row condition (8) of our origin ElementInstance. The resulting rows

deliver the data to create the Row objects (10) that we need to create the

ElementInstances (11) in conjunction with the parent ProxyElement (4). These

ElementInstances correspond to the element nodes (12) to return as result.

Now, having spoken about the implementation of the getParent() function of an

element, why do we talk about result nodes (plural)? If the join (7) is not an asym-

metric join using key and foreign key but a symmetric join using just two columns

required to be equal, the selection (9) may return more than one result row. In this

case, the parent node is unfortunately not clear without ambiguity. That is why we

demand the Setup to only use key and foreign key to nest the defined elements. A

concrete implementation must be able to cope with this situation, nonetheless.

 - 45 -

5.4 Demanded Translation

This section should clarify, how we expect the different constructs of XPath

queries to be translated. This section appears in this chapter and not in Chapter 3,

since the translation may differ from approach to approach (see Chapter 4). Often,

there are several syntactically valid ways to express the same semantic query.

5.4.1 Translating Elements and Columns

A query for the names of all companies would look like Figure 5-14 in XPath

against our virtual document. As we represent tables by elements and columns by

attributes, it is not very surprising that the corresponding SQL statement should

look like Figure 5-15.

/company/@name

Figure 5-14 XPath: all companies names

SELECT Company.Name FROM Company

Figure 5-15 SQL: all companies names

5.4.2 Translating Conditions

Conditions increase the selectiveness of queries and thus are a main source for

performance improvement by executing the query within the database system in-

stead of outside on the virtual document data structure. The query for the ID of the

company with a name equal to ‘FZI’ is an example here. Figure 5-16 shows this

query in XPath syntax. The translated query in SQL should look like Figure 5-17.

/company[@name=’FZI’]/@id

Figure 5-16 XPath: the id of the company called ‘FZI’

SELECT Company.ID FROM Company
WHERE Company.Name=’FZI’

Figure 5-17 SQL: the id of the company called ‘FZI’

5.4.3 Translating Nested Elements

Translation of nesting is probably one of the trickier tasks. Due to the para-

digm gaps between the relational model and the semi-structured model, it can not

be done without some metadata (see section 3.1.1). Consequently, every translation

 - 46 -

bears on the metadata provided during the translation. It is only valid in conjunc-

tion with the provided setup.

5.4.3.1 First Approach

A query like the one in Figure 5-18 returns the names of all divisions. More

precisely, the names of all divisions that belong to any company are queried. If our

database also let us store divisions of clubs or universities, there would be a differ-

ent result from the query in Figure 5-18 to the query in Figure 5-19, indeed.

Consequently, our translation needs a join as shown in Figure 5-20. Regarding the

equality of the results of the queries in Figure 5-18 and Figure 5-19 respectively of

the queries in Figure 5-20 and Figure 5-21 for our very special case, automatically

exchanging them means an optimization step requiring even more metadata in the

setup. Such optimizations are beyond the scope of this thesis.

/company/division/@name

Figure 5-18 XPath: the names of all divisions of all companies

//division/@name

Figure 5-19 XPath: the names of all divisions

SELECT Division.Name FROM (Company INNER JOIN Division)

Figure 5-20 SQL: the names of all divisions of all companies

SELECT Division.Name FROM Division

Figure 5-21 SQL: the names of all divisions

Figure 5-20 contains a short form of the inner join. The join condition ON

Division.Company=Company.CID has been left out, since the human reader who knows

the database schema from Figure 5-5 can easily supplement it notionally. Espe-

cially for the following more complex expressions we will use this concise notation.

5.4.3.2 Correctly Translating Nested Elements

The next example query will show us which join type we have to choose to cor-

rectly translate nesting. Assume, we want the names of all companies of which

either themselves, any of their divisions or any of their employees has the name

‘Knox’. The corresponding XPath query is shown in Figure 5-22. A possible transla-

tion is shown in Figure 5-23.

 - 47 -

mailto://division/@name

/company[.//@name=’Knox’]/@name

Figure 5-22 XPath: the names of all companies where either the company itself, any of its

division, or any of its employees has the name ‘Knox’

SELECT Company.Name
FROM ((Company INNER JOIN Division) INNER JOIN Employee)
WHERE Company.Name = ’Knox’
OR Division.Name = ’Knox’
OR Employee.Name = ’Knox’

Figure 5-23 SQL: the names of all companies where either the company itself, any of its
division, or any of its employees has the name ‘Knox’

But: What if a firm named ‘Knox’ has neither any employees nor any divisions

stored in our database? The XPath query would return it, so we must adapt the

SQL query to return the company if either its name is ‘Knox’, or if it has a division

and that divisions name is ‘Knox’, or if it has a division and this division has an

employee and this employees name is ‘Knox’. This relation is expressed by the LEFT

OUTER JOIN. A corresponding SQL query is shown in Figure 5-24.

SELECT Company.Name
FROM ((Company LEFT OUTER JOIN Division) LEFT OUTER JOIN Employee)
WHERE Company.Name = ’Knox’
OR Division.Name = ’Knox’
OR Employee.Name = ’Knox’

Figure 5-24 SQL: the names of all companies where either the company itself, any of its
division (if it has any), or any of its employees (if it ha any) ha the name ‘Knox’ s s

As a result to these considerations we note that we can build a simulation of

the virtual document within our database by LEFT OUTER JOINing the necessary ta-

bles in the FROM clause. This is what is called Redundant Relation Approach in

[SSB+00].

5.4.4 Translating Existence

Another invidious feature (for implementers) of the XPath query language is

that a query expression does not have to begin somewhere down at the root and go

straight up to a leaf of the queried document. It may also be formulated upside

down or even jump higgledy-piggledy through the nodes of the object tree.

An example is shown in Figure 5-25. This query is not to be mixed up with the

query of Figure 5-14, since we select only names of companies here that have at

least one division with at least one employee (at least in our database).

/company/division/employee/../../@name

Figure 5-25 XPath: the names of all companies for which at least one div sion as well as at
least one employee is stored

i

 - 48 -

The XPath standard defines to evaluate such location paths step by step.24

Every step selects the nodes on the corresponding axis and filters the nodes by a

name test (or node test) afterwards. Finally, the conditions are applied, removing

all nodes not complying with them. The resulting nodes are the local root nodes for

the next step.

Regarding the whole location path expression, per step from the very first until

the progenitor one a node had to exist and fulfill the predicates to allow the current

node to be in the result set. Thus, when working on the proxies of the template

document, we need an additional existence test on every node our location path

touches besides the explicit predicates.

We will translate the test for existence of elements by a keycolumn NOT NULL

construct in our SQL queries25, since its results are equal to those of an existence

test and it costs nearly nothing. This is important since we do not want to search

for any other condition or a constellation of other conditions that implicitly contains

the desired existence test. And if the test is cheap, we can safely connect our exis-

tence test to every node without fearing a major performance penalty. The resulting

SQL query is shown in Figure 5-26.

SELECT Company.Name
FROM ((Company LEFT OUTER JOIN Division) LEFT OUTER JOIN Employee)
WHERE Division.ID NOT NULL
AND Employee NOT NULL

Figure 5-26 SQL: the names of all companies for whi h at least one division as well as a

least one employee is stored

c t

5.4.5 Translating Cross Products

Until now, we were able to create SQL statements that only require one occur-

rence per table in the FROM clause. But there are also cases, where this simply does

not work, for instance for cross product queries. Assume, we want to process a

query like the one in Figure 5-27. This query does not only select customer names

who have been sent an order on the same date as it has been received (like the

wrong translation in Figure 5-28). Instead, this query selects the names of all cus-

tomers who have been send an order on a day we received any (other) order from

them. The corresponding SQL query looks like Figure 5-28.

/taker[order/@sendDate=order/@receiveDate]/@name

Figure 5-27 XPath: cross product example

24 Indeed, ‘step’ is the term used in the XPath standard for a segment of a location path
expression.

25 The existence test for an attribute node is obviously correspondingcolumn NOT NULL

 - 49 -

SELECT Taker.Name
FROM Taker LEFT OUTER JOIN Order
WHERE Order.sendDate=Order.receiveDate

Figure 5-28 SQL: wrong translation of the cross product example

SELECT Taker.Name
FROM ((Taker LEFT OUTER JOIN Order o1) LEFT OUTER JOIN Order o2)
WHERE o1.sendDate=o2.receiveDate

Figure 5-29 SQL: correct t anslation of the cross product example r

Now we could imagine that if a node occurs twice in the XPath query expres-

sion, its corresponding table also had to occur twice in the FROM clause of the

translated SQL statement. But this is not true, as the query from Figure 5-30 (it

contains the parent of item twice) demonstrates.

//item[../@receiveDate=../@sendDate]

Figure 5-30 XPa h: common parent t

This query indeed selects all items, that have been send on the same date as

the order has been received. If a certain item instance is checked whether or not it

is in the result set, its predicate is evaluated. The two operands within this predi-

cate both refer to the parent of the current instance. This is in both cases the same

node. In a translation of this query, the order table may thus occur only once in the

FROM clause. The resulting SQL query is shown in Figure 5-31.

SELECT Item.IID
FROM (Taker LEFT OUTER JOIN Order) LEFT OUTER JOIN Item
WHERE Order.receiveDate=Order.sendDate

Figure 5-31 SQL: common parent

These cross product queries and absolute location paths (predicates containing

absolute location paths form a special kind of cross product queries) are the reason,

why we cannot use the ProxyNodes as operands to our Expressions, even though we

process the result of our query on their structure. The concept to solve this problem

is presented in Section 5.7.

5.5 The Setup

The mapping between the relational elements and the elements of the virtual

document has to be externally defined. The structure of the virtual document as

well as the connections between the tables and columns and elements and attrib-

utes have to be established. This metadata is stored in and provided through what

we call the Se up. t

 - 50 -

5.5.1 Basic Considerations

The Setup needs to contain detailed information about the relational database

schema, at least for the cantle that should be mapped. As well, the Setup contains

all information needed for generating an XML Schema Document (XSD) describing

the virtual document. If all available data for both domains is combined in one

Setup, this document can be used to extract the relational as well as the XML

schema. This is illustrated in Figure 5-32.

Setup

RDB Schema XML Schema

Figure 5-32 Extracting Schemas from the Setup

On the other hand, with the aid of some additional data, the Setup can be cre-

ated from the database schema automatically. The missing XML schema can then

be extracted. Also, Figure 5-33 shows the other way round: The generation of a

Setup from an existing XML Schema. In this case, the database schema is extract-

able.

Setup

RDB Schema

XML Schema

Metadata

Setup

RDB Schema

XML Schema

Figure 5-33 Providing one Schema, creating the Setup and extracting the other one

5.5.2 Requirements

In detail the Setup has to provide

• Elements, their attributes, and their structure

• Tables and their columns

• A primary key for every table

• A foreign key (see Section 5.5.3) for every table represented by an ele-

ment that is a child of an other element. The foreign key must

reference a key of the table corresponding to the parent element.

• The mapping from elements to tables and from columns to attributes26

 - 51 -

26 We require this to be consistent, i.e. an attribute does not refer to a column that be-

longs to a different table than the one represented by the containing element

• The data types of the columns have to be provided to adapt the query

syntax if necessary (especially for type casts).

We confine ourselves to these basic functions here. Apart from them, one could

think of conditions that could automatically be applied to table queries (like Boss IS

NULL) or always joined tables, for instance. We regard this as unnecessarily complex

to implement since it can very easily be realized by dint of (relational) views.

Whether our ‘tables’ refer to true tables or just to views does not matter in this

read-only approach.

5.5.3 Asymmetrical (n:1) Relations

With the introduction of the Extended Example in Section 5.2, we meet a prob-

lem with the modeling of an order’s items. There are two possibilities how the

content could be provided. They are both shown in Figure 5-34.

Version A is the one we used in Section 5.2 without dwelling on it. An order

contains item elements which themselves contain a product attribute. The value of

this attribute is the string used in some product’s id attribute. The functionality is

equal to an ID/IDREF pair, but since we do not require any elements to be unique

within in the virtual document (see Section 5.2), we cannot use mapped attributes

as an ID attribute that may be referenced by an other node via IDREF.

Version B indeed makes use of the fact that no element within the virtual

document has to be unique. It first maps the product nodes corresponding to the

item’s product attribute beyond the order nodes. Then it maps the companies that

produced the products beyond those product nodes. The resulting queries (see

Figure 5-35) would look a lot more pleasing than the ones of version A (see Figure

5-36).

 - 52 -

e
n

id

p
n

id

d
n

id

c
n

id

o r

id

s

t
n

id

R

R Virtual Root Node

c

n

ProxyElement Node

ProxyAttribute Node

e
n

id

e
n

id

e
n

id

i p

e
n

id

p
n

id

d
n

id

c
n

id

o r

id

s

t
n

id

R

e
n

id

e
n

id

e
n

id

Elements
c Company
d Division
e Employee
p Product
t Taker
o Order
i Item

Attributes
id Primary Key
n Name
r Receive Date
s Send Date
p Product (Ref. p.id)

p
n

id

e
n

id

d
n

id

c
n

id

A B

Figure 5-34 Linking (A) vs. Inlining (B)

/taker[@name=’Otto Meier’]/order/product/company/@name

Figure 5-35 XPath query for the inline draft (B)

/company[product/@id=/taker[@name=’Otto Meier’]/order/item/@product]/@name

Figure 5-36 XPath query for the linked draft (A)

The reason for not choosing the much more elegant inlining is not the fear of

the heavy redundancy in the virtual document. It is also not difficult to find out the

node types of the ancestors of companies selected via a query like the one in Figure

5-35. But is impossible to determine one distinct parent instance (that would be of

the type product) for a company instance that offers multiple products. We already

hinted at this problem talking about the getParent() implementation in Section 5.3.

Consequently, we may state, that only key/foreign-key relations (or likewise

asymmetrical (n:1) relations) may be mapped to nested elements. All other kinds of

relations have to be emulated in the XPath query like the equi-join from the query

in Figure 5-36. This is not very pleasant but inevitable, since this dues to a concep-

tual peculiarity.

5.5.4 Example

According to Section 5.5.1, there are multiple ways to obtain a Setup starting

from the manual creation by program code or a definition via an XML document up

to an automatic generation from a database schema. An example XML Schema ac-

 - 53 -

cording to Figure 5-37 can be found in Appendix A, the setup document for the Ex-

tended Example from section 5.2 can be found in Appendix B.

Figure 5-37 An example XML Schema for the Setup

5.6 Expressions

Declarative query languages select certain information items without stating

how to obtain them. To achieve this goal, they provide a mechanism to select

classes of information items coupled with a condition the instances of this classes

have to fulfill to be in the result set. The condition is a Boolean expression within

which the instances are used as operands. If the expression evaluates to true for a

certain instance, this instance will be in the result set.

Certainly, the declaration of conditions cannot use the instances themselves as

operands, since they are as likely as not unknown to the enquirer. Instead, the

classes are used as proxies for their instances as operands in the condition.27 The

query execution engine must be able to resolve these expressions to evaluate the

conditions.

SQL as declarative query language uses a SELECT-FROM clause to describe the

class of the resulting information items and a WHERE clause defines the condition.

XPath queries on the other hand are also structured alike. Unfortunately that is

not as obvious, a tribute to their recursive tree design. The location paths select the

classes of nodes to return, the predicates of the path steps from the condition28. But

if a path is a sub expression of an other path, for instance in a step’s predicate, the

resulting nodes are not returned to the user. Instead, they are used as operands

27 This is comparable to the use of residue classes in modulo arithmetic expressions.
28 Every condition on the path must have been fulfilled in order to return a node

 - 54 -

within the super expression. Often, implicit casts especially to the data type Boo-

lean are used here.

If now we created a binary operation named ‘SELECT_IF’ (σ) with an operand

expressing the class of information items to output and an other operand defining

the condition an instance from that class has to fulfill to be output, we could ex-

press queries of both languages in one single expression. This expression only

consisted of operands and operations, resulting in no additional constructs like

SELECT-FROM and no implicit ‘reuse-or-output’ semantics any more.

The goal is to try to make the concept ‘expression’ center of the object model for

a common query representation. Every translation process needs such a model to

perform major or minor adoptions29. Further on, there are several dialects of SQL.

An abstract query representation allows us to simply use of different serializations

to support a wide range of relational database management systems instead of rec-

reating the whole query translator again every time.

5.6.1 Matrix Operands

The object model of the expressions is probably even more important to the

translation algorithm than the one from section 5.3. But it is by far more obvious

and thus easier to understand. The only thing we really have to take into account is

that XPath allows operands in its expressions that are one order of magnitude more

powerful than the ones allowed in SQL. Both allow scalar operands (like constants)

and vector operands representing a class of information items (the ‘normal’ oper-

ands like column names in SQL expressions). XPath in addition allows a kind of

matrix operands: sets of classes of information items.

Figure 5-38 shows a query that in conjunction with our example (see Section

1.2) contains such a matrix operand. The .//@name operand of the comparison

within the condition refers to the company’s name attributes (/company/@name), the

division’s name attributes (/company/division/@name), and the employee’s name at-

tributes (/company/division/employee/@name). All these are classes that themselves

represent a set of instances.

/company[.//@name=’Knox’]/@id

Figure 5-38 An XPath query with a matrix operand

29 For instance overcome paradigm gaps (section 3.1) or to customization of the query for

a special Setup as described in section 5.4.3.

 - 55 -

Obviously, the resolution of matrix operands is a point where the translation

process has to make the query specific to one particular Setup. For a different

Setup, the .//@name would have referred to different nodes than the above for sure.

5.6.2 Unnesting Matrix Operands

Since SQL does not support matrix operands, they need to be broken down to

vector operands to issue a valid SQL query. The SQL query processor in turn will

then take care of those and break them down to scalar operands by replacing them

with the respective instances to evaluate the condition for us.

For simplicity, we are going to abstract to ‘classes’ and ‘instances’ in the follow-

ing, knowing that the classes represent the matrix operands and the instance

represent the plural operands.

A

B

C

+

=

Figure 5-39 Example Expression containing 3 Matrix Operands, none resolved

Imagine, we have a condition like the one in Figure 5-39. Assuming that the

class A is a proxy for two possible instances: a1 and a2. The condition is evaluated to

true if and only if either a1+B=C or a2+B=C. This is shown in Figure 5-40. The algo-

rithm therefore is of the complexity O(n).

a2

B

C

+

=

a1 +

=
∨

Figure 5-40 Example Expression containing 3 Ma rix Operands, firs resolved t t

The next step is to resolve B. B again consists of to instances b1 and b2. Conse-

quently we must extend the expression to a1+b1=C ∨ a2+b1=C ∨ a1+b2=C ∨ a2+b2=C.

This is shown in Figure 5-41. Obviously, the algorithm is already O(n2).

 - 56 -

a2

b1

C

=

a1

=
∨

b2

=

=
∨

∨

+

+

+

+

Figure 5-41 Example Expression containing 3 Ma rix Operands, second resolved t

t

Finally we are going to break C down. Again, the expression has to be evaluated

for every possible instance. Again, the condition is fulfilled if any of the x+y=z terms

may be evaluated to true. Figure 5-42 shows the resulting expression of the com-

plexity of O(n3).

a2

b1

c1

a1

b2

c2

=
= ∨

=
= ∨

∨

=
= ∨

=
= ∨

∨

∨

+

+

+

+
+

+

+

+

Figure 5-42 Example Expression con aining 3 Matrix Operands, all resolved

Unfortunately we can not make use of the fact that only one of the comparisons

has to be true by performing a lazy evaluation. This dues to the fact that for the

translation process the instances are vectorial values of which the translator does

not know any scalar values to truly evaluate them. This optimization can only be

done by the SQL query processor after we passed him the expression of the com-

plexity of O(ns) whereas s is the number of matrix operands within this expression.

The naïve approach as hinted in Figure 5-42 copies the whole expression for

every instance that should be inserted. Then it replaces the matrix operand by a

distinct instance within each copy. The last step is to connect the resulting expres-

sion by OR. To save a little effort, we could reuse equal terms as shown in Figure

5-43, thus not requiring to save all O(ns∗m) operation nodes (m the number of op-

erations in the original condition), or copy them if an other matrix operand would

have been to resolved. The resulting condition string will contain all O(ns) terms

 - 57 -

each consisting of O(m) operations, though. We can formulate a rule of thumb for

the order of resolution of matrix operands: the deeper, the earlier.

c2

a2

b1

c1

a1

b2

=
= ∨

=
= ∨

∨

=
= ∨

=
= ∨

∨

∨

+

+

+

+

Figure 5-43 Example Expression con aining 3 Matrix Operands, all resolved, u ing com-

mon sub expression

t s

s

5.6.3 The Expression Object Model

As already mentioned, the Expression Object Model is pretty straight forward.

Due to the recursive structure of XPath expressions, an expression may be an oper-

and to an operation in a superior expression. Thus, there actually is only an Operand

object in the object model and no Expression object at all. The terms ‘expression’ and

‘operand’ may be used as synonyms within the Expression Object Model.

The root object of this object model is the Operand. Due to the recursive nature,

everything may be an operand to any other thing. There are two types of Operands:

InnerOperands and OuterOperands. The InnerOperands are those containing other

Operands, Operations, and OperandSets, particularly. They may receive reorganizing

commands through the optimize() function and must provide a copyAndReplace()

function for the resolution of the matrix operands (see section 5.6.2).

OuterOperands on the other hand are Operands that either do not need further

processing or where the translation process is just not able to provide it. In particu-

lar, these are Constants (like NULL, TRUE, FALSE, NAN), Variables (like ‘FZI’ or ‘5’), and

ProxyNodes. ProxyNode is the super class of ProxyElement and ProxyAttribute, known

from the object model of section 5.3. (This is a bit inaccurate as we will see in Sec-

tion 5.4.5. But until we have not explained the problem presented there and also

not the concepts from Section 5.7 intended to overcome them, it does not make

sense to already introduce them here. This is also the reason, why the correspond-

ing node is marked by diagonal lines in the UML diagram from Figure 5-44

representing the Expression Object Model.)

 - 58 -

Operand

+copyAndReplace(in oldOperand : Operand, in newOperand : Operand) : Operand
+optimize() : Operand
+getOperands() : List

InnerOperand

Operation

+add(in o : Operand)
+addAll(in s : OperandSet)

OperandSet

+setOperand(in o : Operand)
+getOperand() : Operand

UnaryOperation

+setLeftOperand(in o : Operand)
+setRightOperand(in o : Operand)
+getLeftOperand() : Operand
+getRightOperand() : Operand

BinaryOperation

-Operands

1..*

-Operation*

OuterOperand

Constant Variable ProxyNode

ProxyElement ProxyAttribute-Element

1

-Attributes

*

-Parent 0..1

-Children *

Figure 5-44 UML diagram for the Express on Object Model i

The copyAndReplace() function does what it’s name suggests. First, it copies the

current Operand. If none of its operands is the provided oldOperand, it sets the oper-

ands of the copy to the results of the copyAndReplace() function call of every Operand

of the original InnerOperand. If one of the original Operands is the searched one, the

copy’s operand will be set to the provided newOperand. Whether or not the other op-

erands are recursively copied or just adopted depends on the replacement strategy.

If we want to utilize the optimization mentioned in section 5.6.2, we just need to

adopt the rest of the operands.

The optimize() function’s implementation heavily depends on the very special

type of InnerOperand. But there is one thing in common: If an InnerOperand receives

an optimize() function call, it should return an optimized equivalent to itself. This

may either be the same instance with just a couple of optimized operands (recur-

siveness!), or it may also be a completely new operand. Two examples can be seen

in Figure 5-45 and Figure 5-46.

optimize() for ADD, a binary Operation:

Operand left = getLeftOperand();
if (left instanceof InnerOperand)
{
 left = ((InnerOperand) left).optimize();
 setLeftOperand(left);
}
Operand right = getRightOperand();
if (right instanceof InnerOperand)
{
 right = ((InnerOperand) right).optimize();
 setRightOperand(right);
}
if ((left instanceof FALSE) or (right instanceof FALSE))
{
 return Constant.FALSE;
}
if (left instanceof TRUE)

 - 59 -

{
 return right;
}
if (right instanceof TRUE)
{
 return left;
}
// no further optimization
return this;

Figure 5-45 optimize() implementation for the AND operation

optimize() for an OperandSet:

For Each o In getOperands()
{
 if (o instanceof InnerOperand)
 {
 Operand optimized = ((InnerOperand)o).optimize();
 this.replace(o, optimized);
 }
}
// remove NULLs, optimize() might have returned NULLs
For Each o In getOperands()
{
 if (o instanceof NULL)
 {
 removeOperand(o);
 }
}
// optimizations count==0 or count==1
if (getOperands().count() == 0)
{
 // do not keep an empty set
 return Constant.NULL;
}
if (getOperands().count() == 1)
{
 // do not keep set if only one operand
 return getOperands().first();
}
// no further optimization
return this;

Figure 5-46 optimize() implementation for an Operand Set

5.6.4 Double Tree Illustration

In this section, we will concentrate on the quirk that XPath expressions cope

with two trees, in fact. First, there is the tree for the expressions itself with its op-

erations and their operands. Second, the operands refer to the elements of the XML

document tree.

For the graphical representation of expressions within this thesis, we choose

two trees facing at each other. On the one hand, there is the operation tree in which

a child of a node represents an operand to an operation. Such a tree has already

been shown in Figure 5-43, for instance. It needs to be read from its root. The sec-

ond tree, on the other hand, represents the template document. According to the

Document Object Model (DOM), this may also be represented by a tree. The tem-

plate document also needs to be read from its root.

Both trees are connected through pointers from the operation tree side to the

template tree side. These pointers illustrate that the corresponding node shall be

used as an operand to that operation. Further on, if constants are used within one

 - 60 -

expression (for example for comparison with a string or a number), these will be

represented by just one single node, that has no further connections. An example

can be seen in Figure 5-47 in which the SELECT_IF operation (see introduction of

Section 5.6) is presented by the node ‘σ’. It shows a query for an employee’s name

whose ID equals 5.

e
n

id

d
n

id

c
n

id

R

R Virtual Root Node

c

n

ProxyElement Node

ProxyAttribute Node

Elements
c Company
d Division
e Employee

Attributes
id Primary Key
n Name

σ

=

5

Figure 5-47 Double Tree Representation of /c/d/e[@id=5]/@name

Actually, there is some additional hidden semantic in this diagram: The query

only makes sense if we require the equality operation’s ‘id’ operand and the SE-

LECT_IF operation’s ‘name’ operand to refer to the same employee instance. Thus,

if multiple operands within the template tree are referenced, we require instances

to cover at least the minimal spanning sub tree containing all of the referenced op-

erands. ‘Instances’ in this case refers to fragments of the virtual document, for

example one single virtual node or a set of virtual nodes forming the desired tree

structure. A more clarifying example for the resulting structural demands is shown

in Figure 5-48. The query outputs the names of all employees of the company

named ‘FZI’. If we did not require a relationship between the company and the em-

ployee here, the query would return all employee’s names if any company in the

database had the name ‘FZI’.

e
n

id

d
n

id

c
n

id

R

R Virtual Root Node

c

n

ProxyElement Node

ProxyAttribute Node

Elements
c Company
d Division
e Employee

Attributes
id Primary Key
n Name

σ

=

’FZI’

Figure 5-48 Double Tree Representation of /c[@name=’FZI’]/d/e/@name

5.7 The Path Tracing Graph (PTG)

As we have already learned from Section 5.4.5, we might require to map an

element multiple times within our query. In this section, we want to concretize the

cases when this is necessary and introduce a new data structure managing the ref-

 - 61 -

erences to the ProxyNode objects. We call this data structure path tracing graph

(PTG), since we build it by recording the traces of our process through the nodes of

the template tree. The PTG will also ensure that we only use a minimal spanning

tree of the information items we require to access within the query.

5.7.1 Clear Position within the Template Document

Assuming we currently have a particular node ν somewhere in the middle of

the template tree. The particularity of the node may for instance due to the fact

that the user passed our query processor one certain node instance as context node

for the path processing. Such an instance obviously has one defined representative

in the template tree. The particularity may also due to constraints imposed to it by

the processing of previous steps. In this case, there may be multiple nodes meeting

these constraints. If so, we simply treat them one by one. Thus we can assume, that

for every processing state, we can define one distinct position within the template

document.

5.7.2 Moving around in the Template Document

There are two ways to navigate to an other node starting from ν. The first is to

further process the current location path expression, the second is to step into the

predicates. This movements is what we are going to record with the Path Tracing

Graph.

For the PTG, it does not matter, which way actually has been chosen for navi-

gation. The axis of the next step (may this either be the next step in the current

location path or the first step in one of its predicates operands) is relevant, and

whether or not the next step is relative to ν at all is of even greater importance.

Namely for predicates it is possible to replace the current context node by the root

node, since they form a new location path which may be absolute. Nonetheless, this

shall not hinder us not to distinguish between the next step of the current location

path and the first step of the predicates operands (at least for the utilization trace)

– the next step of the current location path just will never be absolute.

5.7.3 An Example for Building the Path Tracing Graph

Let ν be the taker (t) node within the template document of our Extended Ex-

ample from Section 5.2. We are now going to process the query from Figure 5-27 in

detail. Stepping into the predicate, we have to translate two terms to evaluate the

 - 62 -

comparison. The first term is the order/@sendDate which consists of two relative

steps. The first step (S1.1) selects a child node with the name ‘order’, the second one

(S1.2) selects attributes of such nodes with the name ‘sendDate’. Walking this path,

we build our Path Trace Graph step by step. This is shown in Figure 5-49.

d

n

c

n o

r s

t

n

R

e

n

S1.1

o'

t'

R

S1.2

s'

t[o/@s=o/@r]

S1.1 S1.2

Current Context

Pointer

Path Step

Path
Tracing
Graph

Template Document

Figure 5-49 Building the Path Tracing Graph (first term)

The second term, order/@receiveDate, has the same first step. But we may, ac-

cording to Section 5.4.5, not use the same order nodes for further processing.

Instead, we have to create a second child node (o’’) to our context node (t’) within

our PTG, pointing to the same schema node (o) as the already existing child node

(o’), but expressing the independence of the node instances in both sets. Then, we

can correctly express our condition as shown in Figure 5-50.

d

n

c

n o

r s

t

n

R

e

n

S1.1

o'

t'

R

S1.2

s'

t[o/@s=o/@r]

S1.1 S1.2

S2.1 S2.2
o''

r'

S2.2
S2.1

= Current Context

Pointer

Path Step

Path
Tracing
Graph

Template Document

Figure 5-50 Building the Path Tracing Graph (second term)

The reason why we need a second branch within our PTG is the resolution of

plural operands within the query executor. A ProxyNode o, respectively its corre-

sponding table, represents all its possible instances, but within the XPath language

as well as in SQL, as an operand to an expression, o represents only one instance at

a time (but each during the whole processing).

5.7.4 Navigation along the Axes

This section shall clarify how the Path Tracing Graph reacts to the occurrence

of new nodes relatively above or relatively below the position of the current context

 - 63 -

node. Our considerations may be grouped into four categories: ascendant nodes

(parent, ascendant), descendant nodes (child, descendant), attributes (attribute) and

the containment of the self axis (self, ancestor-or-self, descendant-or-self).

5.7.4.1 Navigation to Ascendant Nodes

In Section 5.4.5, also a second problem has been addressed: the navigation to

ascendant nodes. For the navigation in the direction of the root node, it is unneces-

sary to create multiple branches. Multiple references from a certain node within a

tree to one particular of its ancestors (either always the parent node or always the

grandparent node) will always return one single instance – and that instance is al-

ways the same. Concluding, ascendant nodes do not cause the PTG to create new

branches, they just reuse their former instance.

5.7.4.2 Navigation to Descendant Nodes

As we have seen in Section 5.7.3, nodes that are descendant to the current con-

text node cause the PTG to create a new branch starting at the current context

node and ending at the descendant node. It is important to mention that also the

branch on which a node lies is part of the context information for the steps relying

on that node. These nodes traces must ‘grow’ on the same branch as their origin.

This can also be read out of Figure 5-50.

5.7.4.3 Navigation along the Self Axis

Since the self axis is defined to select a single node (see [Kay01], p. 365), the ori-

gin node itself, it acts like an ascendant node to the Path Tracing Graph (see

Section 5.7.4) and will not create new branches. This is along with the ancestor-or-

self and the descendant-or-self axes only true for this special node on the self axis

(if any). The rest of the nodes (if any) must be treated according to Section 5.7.4.1 or

to Section 5.7.4.2, respectively.

5.7.4.4 Navigation to Attribute s

Even though the attributes are always depicted as descending nodes in the fig-

ures of this thesis, they do not cause the PTG to create new branches. The attribute

axis is always applied to its origin element, only. Since an element can only have

one value for an attribute (or none), the attribute is unique from the point of view of

the origin node (which is our current context node). So every reference to the class

of this attribute that passes the current context node, will always return the same

 - 64 -

instance. Consequently, the PTG will not branch for attributes. It may have

branched to reach the context node though, see Figure 5-50.

5.7.5 Transformation of the PTG to SQL

The Path Tracing Graph forms a minimal spanning tree of all operands used in

the superior expression. In relational terms, it can thus be regarded as a kind of

universal table, at least for the fragment of the databases mini world30, our query

covers. If the PTG is serialized with each of its nodes receiving a unique name

within the FROM clause of the SQL queries we produce, we can simply use these op-

erands in the WHERE clause. In this case we do not even need to think about the

paradigm gap described in Section 3.1.1 anymore.

To achieve this goal, we explicitly (most other approaches use implicit joins

somewhere in the WHERE clause) build a LEFT OUTER JOIN tree from the PTG in the

FROM clause. For every parent-child edge in the tree, we add a LEFT OUTER JOIN child

to what we already have (also containing the parent). The (always virtual) root

node must be omitted, instead we use the first level nodes as ‘seeds’ for our growing

join trees. The first level nodes then coexist without mutual interference, thus con-

stituting a cross product.

The statement on the existence without mutual interference is only true within

the FROM clause, of course. Multiple first level nodes indicate multiple absolute loca-

tion paths. This is only possible within expressions or predicates, thus the two

‘independent’ trees will in any case be connected by some operation within the WHERE

clause of the generated SQL statement.

An example of a serialized PTG can be seen in the following example. The

query /company[.//employee[@name=’Kazakos’]/employee]/@name obtains all company’s

names that have an employee with the name ‘Kazakos’ who is the boss of an other

employee. The FROM clause of the corresponding SQL statement in Figure 5-51

shows the transformed PTG. If we would output the PTG itself, the results looked

like Figure 5-52, or even closer to the tree-like structure of XML documents in the

nested illustration of Figure 5-53.

SELECT c.Name
FROM COMPANY c
LEFT OUTER JOIN DIVISION d ON T_DIVISION.Company = T_COMPANY.ID
LEFT OUTER JOIN EMPLOYEE e1 ON e1.Division = d.ID
LEFT OUTER JOIN EMPLOYEE e2 ON e2.Boss = e1.ID
LEFT OUTER JOIN EMPLOYEE e3 ON e3.Boss = e2.ID
WHERE (e1.Name=’Kazakos’ and e2.id NOT NULL)
OR (e2.Name=’Kazakos’ and e3.id NOT NULL)

Figure 5-51 SQL query with serialized PTG

30 for the definition of the term mini world see , Section 2.2.1 [LaLo95]

 - 65 -

Figure 5-52 The ‘univ sal table’ build fo the example query

/c/@name /c/d/@name /c/d/e/@name /c/d/e/e/@name /c/d/e/e/e/@name

FZI DBS P.C. Lockemann Wassili Kazakos Alexey Valikov

FZI DBS P.C. Lockemann Wassili Kazakos Andreas Schmidt

FZI DBS Wassili Kazakos Alexey Valikov

FZI DBS Wassili Kazakos Andreas Schmidt

FZI DBS Alexey Valikov

FZI DBS Andreas Schmidt

FZI PROST Gerhard Goos Benedikt Schulz Thomas Genßler

FZI PROST Benedikt Schulz Thomas Genßler

FZI PROST Thomas Genßler

FZI SWT Walter F. Tichy Andreas Judt Alexander Christoph

FZI SWT Walter F. Tichy Andreas Judt James J. Hunt

FZI SWT Andreas Judt Alexander Christoph

FZI SWT Andreas Judt James J. Hunt

FZI SWT Alexander Christoph

FZI SWT James J. Hunt

Siemens A&D AS IT Alfred Schmit

Siemens A&D AS PAS

er r

er

e r t

Figure 5-53 The ‘univ sal table’ with visualized nesting

/c/@name /c/d/@name /c/d/e/@name /c/d/e/e/@name /c/d/e/e/e/@name

Alexey Valikov

Andreas Schmidt

Alexey Valikov

Andreas Schmidt

Alexey Valikov

Andreas Schmidt

Gerhard Goos Benedikt Schulz Thomas Genßler

Benedikt Schulz Thomas Genßler

Thomas Genßler

Alexander Christoph

James J. Hunt

Alexander Christoph

James J. Hunt

Alexander Christoph

James J. Hunt

A&D AS IT Alfred Schmit

A&D AS PAS

Andreas Judt

P.C. Lockemann Wassili Kazakos

Wassili Kazakos

Walter F. Tichy Andreas Judt

FZI

Siemens

DBS

PROST

SWT

5.8 The Core Algorithm

The algorithm splits into three parts. The first part is to build the expression

objects from the XPath query string. This step includes parsing, of course. The sec-

ond step is to serialize the expression to one or many SQL query strings that may

be executed against the database. And last, but not least, we have to create in-

stance nodes from the resulting rows.

5.8.1 Building the Expression

Not : This Section presents the core algo ithm. It really is no difficult to
understand but it is a bit bulky to explain. Thus it will be developed step by

 - 66 -

step to relieve the understanding. We al o suggest to recall Section 5.3, espe-
cially t Figure 5-11.

s
o

XPath queries are written by the enquirer in string form. Thus we will receive

a string that first needs to be parsed for being processed any further. Such parsing

can be implemented using JavaCC or likewise tools. We will not go into details of

this task and expect the user to obtain a sensible object representation of the string

query by himself. This object model just has to provide apparent functions like ac-

cess to the location path steps, to the axes, to the predicates, and so on.

Assuming we have parsed the XPath query string, we can start to build the

Expression. Lately, we want to obtain several node instances that fulfill the query

conditions. We do this by simulating a naïve XPath processing approach analogous

to the XPath definition. We start at the context node and process the path expres-

sion step by step, calculating intermediate results (without materializing the

instances, of course). The intermediate results are used as context nodes for the

next step. If no context node has been provided, it defaults to the root node. The

nodes that remain from the last step are to be returned as the result.

5.8.1.1 Processing a Step

To process one step, we need to do the following: Starting at a certain node, our

context node, we first select all the nodes on the axis provided by the current step

into a set. Afterwards, we discard all nodes that do not match the node test (which

may either be a name test or a node type since we do not support processing in-

structions) from this set. We cannot do this on the instances since we do not want to

materialize them, at least if they are not the result of the whole XPath query. But

we are able to work on the template document, since if ProxyNode meets these re-

quirements (axis and node test), all the instances it represents also meet them.

They all have the same name respectively the same node type like the proxy node

and they are structurally at the same position as the proxy node, thus also fulfill

the axis requirement. This is hinted in Figure 5-54.

 - 67 -

Template
Document

Virtual Document

R R

b

a

Figure 5-54 Working on the ProxyNode s

The next thing to do is to apply the predicates. Since we operate on proxies and

do not know any instances, we cannot evaluate them. We cannot select those that

are kept and those that are removed from the result set. But we can at least de-

scribe which instances represented by the proxies would remain in the set by

concatenating a condition to each proxy node. For now, we expect to have a function

capable of processing a predicate for us and return a Boolean expression. This ex-

pression is what we call a condition.

A node may have to fulfill several predicates to be in the result set. Thus, the

conditions have to be combined to one condition by an AND chain (or tree, but the

chain is simpler to implement). Summing up, our algorithm looks like Figure 5-55

so far.

FUNCTION processStep (
 IN (NodeOperand contextNode, Operand contextCond);
 IN Axis currentAxis;
 IN NodeTest currentNodeTest;
 OUT Set[(NodeOperand contextNode, Operand condition)];
)
 // apply axis
Set nodesOnAxis = contextNode.getProxyNodesOnAxis(currentAxis);
// apply nodetest
Set filteredNodes = nodesOnAxis.filterNodesThatMatch(currentNodeTest);
Set resultSet = new Set[(contextNode,condition)];
// apply predicates
For Each Node n in filteredNodes
{
 Operand condition = Constants.TRUE; // no predicates means no restriction
 For Each Predicate currPredicate in currentPathStep.getPredicates()
 {
 XPathExpression expr = currPredicate.getExpression();
 Operand predicate = processPredicate(currentNode, expr);
 condition = new And(condition, predicate);
 }
 Tuple t = (contextNode,condition);
 t.setContextNode(currContextNode)
 t.setCondition(condition);
 resultSet.add(t);
}
return resultSet;
END FUNCTION

Figure 5-55 Process one step (first approach)

Something that we have to take into account now is the need for path tracing

(see Section 5.7). Since we cannot operate on instances, we need to work on proxies.

 - 68 -

But according to the insights of Section 5.7 we cannot use the ProxyNode objects

themselves as operands to the expressions, since we might lose the knowledge

about the independence of multiple node sets, if both are represented by only one

ProxyNode. Consequently, we use the nodes of the Path Tracing Graph as operands

for the expression. These nodes point to the ProxyNode they belong to, thus transi-

tively to the instances. They may be considered as proxies for proxies or, for the

core algorithm, simply as proxies for the corresponding instances.

Further on, the PTG attends to procure us with the necessary data. Its seriali-

zation creates variables we simply can use within the whole expression. All we need

to do here is to provide the necessary information to the PTG module to enable it to

build its internal data structure. This information is the context node, the axis and

the next node to process.

A thing we have to heed is the dependence of a step’s result nodes on the con-

text node for a proxy algorithm. This is not yet implemented correctly. The above

will not work correctly for a certain node within the document.

Assume we start at a certain virtual node which is mapped to ProxyNode a

within the template document. The next step looks like child::*. Starting from

ProxyNode a, selecting all children with any name, we meet ProxyNode b. This node,

according to our definition of a ProxyNode, represents all instances that are children

of any instances represented by ProxyNode a. This is shown in Figure 5-56. This is

incorrect, the proper selection would comprehend the children of the initial virtual

node only.

Template
Document Virtual Document

R R

b

a

Figure 5-56 Navigation on template viola ing the structural relation to progenitor t

To achieve the correct selection, our navigation would have to impose a restric-

tion to the set of instances represented by ProxyNode b. Such a restriction may only

be applied in the current context, not in general.31 It has to limit the set to only con-

 - 69 -

31 An other reference to the ProxyNode may require its set of instances in an unre-

stricted manner.

tain nodes that have the desired structural relation to the selected ancestor32 node

as shown in Figure 5-57.

Template
Document Virtual Document

R R

b

a

Figure 5-57 Navigation on template rega ding the structural relation to progenitor r

According to Section 5.4.4, we need connect an existence test to every node.

Thus we can also expect the condition of the progenitor node to contain it. To ar-

chive the desired restriction, it is sufficient to append the condition of the

progenitor node to the condition of each of the current result nodes. Afterwards, we

can discard33 the progenitor node, since we do not need it any more.

For a complete location path, the process looks as follows: Every certain step

takes one proxy node in conjunction with a condition as context and returns its re-

sult proxy nodes also each with an attached condition. Every result node then is

once context node for the processing of the next step. All the thus emerging new re-

sult nodes together form the new result set, the old result nodes are discarded. Only

their conditions live on in the conditions of the new result nodes, and so on. The re-

sult nodes of the last step form the basis for the building process of Section 5.8.4,

their conditions for the serialization process from Section 5.8.3.

One word at the attached conditions: They are a passing through parameter

bound to the context node, not bound to the operands. Or, in other words, they need

to be passed by value, not by reference. If they are bound to the operands, the proc-

essing of a query like the one from Figure 5-58 fails. May the parent p of node x

have a certain condition pp. The condition of x will then become px:=pp∧∃(p)∧true.

The first term comes from the previous deliberations. We require the second term

according to Section 5.4.4. The third term impersonates the predicates of the path

step child::x. Since there are none, they are in any case fulfilled. Now we return to

the parent node. The condition of p becomes pp:=px∧∃(x)∧true. If we pass a reference

32 The term ‘ancestor’ does not refer to the ancestor axis of XPath here, but to the ances-

tor step’s result nodes of our path expression. For clearness, we will use the term
‘progenitor’, instead. In this case, the progenitor node is the parent.

33 Of course, the ProxyNodes are kept within the Setup, the traces are kept within the
PTG and the operands stay within the expression. We are just done with it in the algorithm
here and do not need it for further processing.

 - 70 -

to px which itself contains a reference to pp, we will have a hard time serializing the

resulting expression pp=pp∧∃(p)∧true∧∃(x)∧true. With a reference by value seman-

tic, we obtain pp=pp(old)∧∃(p)∧true∧∃(x)∧true. Thus the existence of p still relies on

the existence of p (hen-egg-problem), but this is due to our way of translating it (see

Section 5.4.4) no problem. The corresponding SQL clause will look like Figure 5-59.

x/.. (≡ child::x/parent::node())

Figure 5-58 XPath query that will fail in pass by reference semantics

... WHERE pp(old) AND p.KeyCol NOT NULL AND x.KeyCol NOT NULL

Figure 5-59 Translation of the pass by ref. vs. pass by val. seman ics t

The algorithm finally looks like Figure 5-60.

FUNCTION processStep (
 IN (NodeOperand contextNode, Operand contextCond);
 IN Axis currentAxis;
 IN NodeTest currentNodeTest;
 OUT Set[(NodeOperand contextNode, Operand condition)];
)
 // apply axis
Set nodesOnAxis = contextNode.getProxyNodesOnAxis(currentAxis);
// apply nodetest
Set filteredNodes = nodesOnAxis.filterNodesThatMatch(currentNodeTest);
Set resultSet = new Set[(contextNode,condition)];
// apply predicates
For Each Node n in filteredNodes
{
 // inclide path tracing
 NodeOperand currentNode = PTG.getNode(n, contextNode, currentAxis);
 // every node has the condition ‘must exist’ (see Section 5.4.4)
 Operand condition = new EX(contextNode);
 For Each Predicate currPredicate in currentPathStep.getPredicates()
 {
 XPathExpression expr = currPredicate.getExpression();
 Operand predicate = processPredicate((contextNode,contextCond),expr);
 condition = new And(condition, predicate);
 }
 // include context information
 condition = new And(contextNode.getCondition(),condition);
 Tuple t = (contextNode,condition);
 t.setContextNode(currContextNode)
 t.setCondition(condition);
 resultSet.add(t);
}
return resultSet;
END FUNCTION

Figure 5-60 Pseudo Code for Function processStep

5.8.1.2 Processing a Predicate

A predicate is according to its definition again an XPath expression and can

thus be processed equally. Yet, we have to watch the result type(s), which in con-

tradiction to the result instances we necessarily can determine. Basically, a

predicate may either be a Boolean expression or a numeric expression. If the value

of a predicate is a number, it is treated like a numeric predicate; if it is of any other

type, it is converted to Boolean using the boolean() function (see [Kay01] p. 452-454)

and is treated as a Boolean predicate. Since we do not support lateral navigation in

 - 71 -

this approach (see Section 3.1.2), we also apply the boolean() function to numeric

values.

So, if the predicate is a Boolean expression, we just have to translate it and use

it as condition. If the XPath expression returns a non complex value, it must be con-

verted to Boolean. If it returns nodes, the expression will be an (implicit) existence

test. The results of the expression are used as operands to an EX() (exists) opera-

tion to explicitly express this test. This operation in turn is the condition we are

binding to the proxy.

FUNCTION processPredicate(
 IN (NodeOperand contextNode, Operand contextCond);
 IN XPathExpression expr;
 OUT Operand;
)
Operand condition;
if (expr instanceof LocationPath)
{
 // this predicate will select multiple nodes
 Set s = new Set[(NodeOperand contextNode, Operand contextCond)];
 s = processLocationPath((contextNode,contextCond),expr);
 // we do not need the nodes. we only need to know if any
 // of them exists
 condition = Constants.FALSE; // none of them exists per se
 For Each Tuple t in s
 {
 // a node exists if its contextCond may be evaluated to true
 condition = new OR(condition, t.getContextCond());
 }
}
elseif (expr instanceof NaryExpression)
{
 // this is an n-ary expression and will thus return a noncomplex value
 Operand o = processNaryExpression((contextNode,contextCond),expr);
 // the expression must evaluate to true
 condition = castToBooleanIfNecessary(o);
}
else
{
 // something else??
 throw new Exception();
}
return condition
END FUNCTION

Figure 5-61 Pseudo Code for Function processPredicate

5.8.1.3 Processing an N-Ary Expression et al.

The processing of an n-ary expression as well as the other functions are pretty

straight forward. But for the sake of completeness, they will at least be mentioned

in Appendix D.

5.8.2 Transforming the Expression

When we are done with the building process, we need to apply some minor

transformations. Most important, we have to resolve the matrix operands (see Sec-

tion 5.6.2). Then we could also apply a few optimizations, for instance to remove

unnecessary TRUE AND ... constructs (see Section 5.6.3). But we do not attempt to

 - 72 -

optimize the whole expression, since the general problem, called que y minimiza-
tion is NP-complete (see [ChMe77]).

r

5.8.3 Serializing the Expression to SQL Queries

Since an XPath expression may select multiple elements from the Schema tree,

it is not possible with our mapping (see Section 5.3) to obtain the necessary data

with one single SELECT statement. Indeed, multiple elements representing multiple

tables could be gathered using a union join which in fact is also not really different

from a UNION ALL statement (see [Date93] p. 239). Thus for the simplicity, we assume

that every result Schema element creates one separate SQL query, ignoring per-

formance issues that may or may not result from issuing just one query utilizing

UNION. (Microsoft’s SQL Server 2000 for instance does not seem to optimize UNION

statements at all.)

To create the SQL statement for a certain Schema element, we first serialize

the PTG for the FROM clause (see Section 5.7.5). This makes available a unique vari-

able name for every position within the virtual document we create with this step

within the database.

Since our conditions contain references to the nodes of the PTG, we can easily

obtain the unique variable names they received and use them within the serializa-

tion of the condition. Thus we can easily take over the condition as it is just using

the terms of SQL serializing it.

5.8.4 Creating Virtual Document Node Instances

According to the object model (see Figure 5-11), we need to create a Row object

for each resulting row of each accruing SQL query, no matter whether the desired

result node is an ElementNode or an AttributeNode. Since the Row object represents a

unique table row in our database, we have to save the necessary key column values

within that Row object. Thus the SELECT part of the serialized Expression (see Section

5.8.3) has to reflect this.

More interesting than the true creation of the Virtual Document Nodes (it can

easily be derived from the description of the navigation from a child to its parent

element from Section 5.3) is the point of time of creation. Either it uses early
evaluation, creating them right after the querying and filling them into a bird-

brained set which is returned to the user. An other possibility would be the lazy
evaluation, equipping the set with the result (schema-) node objects and the condi-

tions. Such a set would materialize the virtual (instance-) nodes it contains not

 - 73 -

until they are really accessed by either counting them, iterating through then, ac-

cessing their values, et cetera.

Assume we want to process an XSLT style sheet. Since their template defini-

tions (see [Kai01], p. 312-323) are normally nested, the reuse of the current XPath

query result is pretty likely. The first rule to apply in such a document is mostly

<xsl:template match=”/” /> and just used to call other templates. For a naïve XSLT

processor implementation we would in any case already have an enormous advan-

tage over approaches that serialize the whole result document. Nevertheless we

would strongly recommend to use lazy evaluation, to not let steps access the data-

base, that are only used for structuring purposes and do not use any data from the

virtual document.

5.9 Realization

We have implemented an early prototype of the XPath-to-SQL translation

process in Java. For the parsing of XPath into an advantageous object model (see

5.8.1), we used SixPath34. This open source library (Mozilla Public License) consists

of a parser for XPath expressions and a set of classes which are used to represent

their structures. The parser creates an object representation of the posed XPath ex-

pression which we can easily be read out.

Q1: /company/division
Q2: /company/division//@name
Q3: //@name
Q4: //employee[@name='Angel']/ancestor::company//@name
Q5: //employee[@name='Lord']/ancestor::company//employee[@name='Devil']/ancestor::company//@name

Figure 5-62 Five test queries for our prototype

The prototype produced the demanded translations for the test queries (five of

those are shown in Figure 5-62). Figure 5-63 shows a table containing the time the

translation of 100.000 XPath queries (20.000 times translating the 5 queries of

Figure 5-62, including serialization to SQL) required on JDK 1.4 on an AMD Athlon

1,33 GHz processor. This shows us, the translation process is not only simple to un-

derstand but also ‘simple to process’. A production version is likely to be even

faster, since the prototype was only a proof of concepts.

34 see http://sourceforge.net/projects/sixpath/

 - 74 -

http://sourceforge.net/projects/sixpath/

ms/100.000 Translations

67166

71663

76069

80095

60000

65000

70000

75000

80000

85000

9 12 15 1

Nodes in Setup

m
s

8

Figure 5-63 Translation speed for 9/12/15/18 Nodes in Setup

 - 75 -

 - 76 -

6 Conclusion and Future Work

We have presented a way to query relational database table data by XPath

through a view simulating a virtual document. In contradiction to any other ap-

proach, we use an object model to only return the results instead of deep-

materializing the whole selected document fragment, tagging it and returning it in

text form. This enables relative queries by providing a certain context node with

the XPath query string. The object model further on allows basic navigation accord-

ing to the functions of the W3C Document Object Model.

As we already have mentioned in Section 5.4.3.2, we use the Redundant Rela-

tion Approach (see [SSB+00]) for the internal simulation of the virtual document. We

do not expect this approach to behave that bad in our case, since we do not use it for

outputting purposes, thus requiring a lot of tuples to really be materialized, but for

querying purposes. Branches from the main location path are always used to nar-

row down the results, they con only be created through predicates. Thus the fan out
as it is called in that paper should not really be an issue here. But for sure it would

be interesting to try to find other ways of serializing the PTG to SQL and compare

their speed.

Query Optimizer Architecture (schematic)

Scanner and Parser

Query Transformer

Query Optimizer

Query Code Generator

DBMS Runtime System

Internal Files

Physical Data Structures

Segments

Memory Management

Presentation Layer

Logical Schema

Internal Schema

Physical Schema

X2S/XPERANTO/XRel/etc.

Scanner and Parser

Query Transformer

Query Optimizer

Query Code Generator

Figure 6-1 Current Approaches

An other point worth researching would be to evaluate (existing) query optimi-

zation techniques for the applicability in conjunction with both, processing XPath

queries and materializing their results. [JaMS02] and [Shan01] do already parts of this

work, but they stick to SQL interface, inducing special optimizations of the query

through the relational database systems query optimizer by special SQL state-

ments (as shown in Figure 6-1). A reason for this is that general purpose

optimizers, like the ones in (commercial) relational database management systems,

do not and sometimes even can not apply optimizations that would be valid for the

special case of processing an XPath (or likewise) query (see [JaMS02]).

 - 77 -

The question is, whether there may be an even greater potential for optimiza-

tion (also regarding those requiring special metadata as described in Section 5.4.3)

not using the detour via SQL, or if the advantage of these optimizations in point of

fact can as well be achieved through ‘induction’. In the latter case, one would surely

not want to abandon the platform independence of the current approaches. An open

source RDBMS like PostgreSQL or MySQL could allow to attach a special purpose

optimizer for determining processing plans for XPath queries, using only primitives

of a lower system level to evaluate these different techniques. A good starting point

for this research could be [FeMS01].

Besides a reliable and optimized implementation, two things which are missing

in this approach are the support for ordering (preceding, preceding-sibling,

following, following-sibling axes) and read-write support of the result object

model. Imaginable extensions to this work may further be an interactive browser,

allowing a user to navigate the view of the database and an XSLT processor, mak-

ing use of the provided access to relational data.

 - 78 -

Appendix A

This is an Example XSD (XML Schema Definition) defining the element struc-

ture of a Setup XML document as described in section 5.5. Even though it is

relatively strict in matters of valid keys and key references, it still has two weak-

nesses: (a) It can not ensure that the attributes columns belong to the containing

elements table and (b) it does not allow ‘endless’ recursions. Thus a user defining a

setup according to this XSD has to define a maximum level of recursion and an im-

plementation using such a setup will ignore any database data that would require a

deeper recursion. A delineation of the file is shown in below.

It shall formally be pointed out, that this schema is only an example. Many

other schemas are possible without interfering with the rest of this approach.

Schema.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="setup">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="table">
 <xs:annotation>
 <xs:documentation>Used to define a table.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="column">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"
 use="required"/>
 <xs:attribute name="CID" type="xs:ID"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="key">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="columnref">
 <xs:complexType>
 <xs:attribute name="refer"
 type="xs:IDREF"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="KID" type="xs:ID"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="foreignkey">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="columnref">
 <xs:complexType>
 <xs:attribute name="refer"
 type="xs:IDREF"

 - 79 -

 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="keyref" type="xs:IDREF"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="TID" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:keyref name="keycolumref" refer="localcolumnid">
 <xs:selector xpath="key/columnref"/>
 <xs:field xpath="@refer"/>
 </xs:keyref>
 <xs:keyref name="foreignkeycolumnref" refer="localcolumnid">
 <xs:selector xpath="foreignkey/columnref"/>
 <xs:field xpath="@refer"/>
 </xs:keyref>
 <xs:key name="localcolumnid">
 <xs:selector xpath="column"/>
 <xs:field xpath="@CID"/>
 </xs:key>
 </xs:element>
 <xs:element name="element" type="elementType"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="tablekey">
 <xs:selector xpath="table/key"/>
 <xs:field xpath="@KID"/>
 </xs:key>
 <xs:keyref name="foreignkeyref" refer="tablekey">
 <xs:selector xpath="table/foreignkey"/>
 <xs:field xpath="@keyref"/>
 </xs:keyref>
 <xs:key name="tableid">
 <xs:selector xpath="table"/>
 <xs:field xpath="@TID"/>
 </xs:key>
 <xs:key name="columnid">
 <xs:selector xpath="table/column"/>
 <xs:field xpath="@CID"/>
 </xs:key>
 <xs:keyref name="elementtableref" refer="tableid">
 <xs:selector xpath=".//element"/>
 <xs:field xpath="@table"/>
 </xs:keyref>
 <xs:keyref name="attributecolumnref" refer="columnid">
 <xs:selector xpath=".//attribute"/>
 <xs:field xpath="@column"/>
 </xs:keyref>
 </xs:element>
 <xs:complexType name="elementType">
 <xs:annotation>
 <xs:documentation>The structure of an element definition</xs:documentation>
 </xs:annotation>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="attribute">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="column" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="element" type="elementType">
 </xs:element>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="table" type="xs:IDREF" use="required"/>
 </xs:complexType>
</xs:schema>

 - 80 -

Appendix B

The following XML file describes the Setup (see Section 5.5) for the Extended

Example (see Section 5.2) according to the Example XSD of Appendix A.

ExtExample.xml

<?xml version="1.0" encoding="UTF-8"?>
<setup
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation="schema.xsd">
 <table TID="t01" name="COMPANY">
 <key KID="k0101">
 <columnref refer="c0101"/>
 </key>
 <column name="CID" CID="c0101"/>
 <column name="Name" CID="c0102"/>
 </table>
 <table TID="t02" name="DIVISION">
 <key KID="k0201">
 <columnref refer="c0201"/>
 </key>
 <foreignkey keyref="k0101">
 <columnref refer="c0202"/>
 </foreignkey>
 <column name="DID" CID="c0201"/>
 <column name="Company" CID="c0202"/>
 <column name="Name" CID="c0203"/>
 </table>
 <table TID="t03" name="EMPLOYEE">
 <key KID="k0301">
 <columnref refer="c0301"/>
 </key>
 <foreignkey keyref="k0201">
 <columnref refer="c0302"/>
 </foreignkey>
 <foreignkey keyref="k0301">
 <columnref refer="c0303"/>
 </foreignkey>
 <column name="EID" CID="c0301"/>
 <column name="Division" CID="c0302"/>
 <column name="Boss" CID="c0303"/>
 <column name="Name" CID="c0304"/>
 </table>
 <table TID="t04" name="PRODUCT">
 <key KID="k0401">
 <columnref refer="c0401"/>
 </key>
 <foreignkey keyref="k0101">
 <columnref refer="c0402"/>
 </foreignkey>
 <column name="PID" CID="c0401"/>
 <column name="Company" CID="c0402"/>
 <column name="Name" CID="c0403"/>
 </table>
 <table TID="t05" name="TAKER">
 <key KID="k0501">
 <columnref refer="c0501"/>
 </key>
 <column name="TID" CID="c0501"/>
 <column name="Name" CID="c0502"/>
 </table>
 <table TID="t06" name="ORDER">
 <key KID="k0601">
 <columnref refer="c0601"/>
 </key>
 <foreignkey keyref="k0501">
 <columnref refer="c0602"/>
 </foreignkey>
 <column name="OID" CID="c0601"/>

 - 81 -

 <column name="Taker" CID="c0602"/>
 <column name="receiveDate" CID="c0603"/>
 <column name="sendDate" CID="c0604"/>
 </table>
 <table TID="t07" name="ITEM">
 <key KID="k0701">
 <columnref refer="c0701"/>
 </key>
 <foreignkey keyref="k0601">
 <columnref refer="c0702"/>
 </foreignkey>
 <foreignkey keyref="k0401">
 <columnref refer="c0703"/>
 </foreignkey>
 <column name="IID" CID="c0701"/>
 <column name="Order" CID="c0702"/>
 <column name="Product" CID="c0703"/>
 </table>
 <element name="company" table="t01">
 <attribute name="id" column="c0101"/>
 <attribute name="name" column="c0102"/>
 <element name="division" table="t03">
 <attribute name="id" column="c0301"/>
 <attribute name="name" column="c0302"/>
 <element name="employee" table="t04">
 <attribute name="id" column="c0401"/>
 <attribute name="name" column="c0402"/>
 <element name="employee" table="t04">
 <attribute name="id" column="c0401"/>
 <attribute name="name" column="c0402"/>
 <element name="employee" table="t04">
 <attribute name="id" column="c0401"/>
 <attribute name="name" column="c0402"/>
 <element name="employee" table="t04">
 <attribute name="id" column="c0401"/>
 <attribute name="name" column="c0402"/>
 </element>
 </element>
 </element>
 </element>
 </element>
 </element>
 <element name="taker" table="t05">
 <attribute name="id" column="c0501"/>
 <attribute name="name" column="c0502"/>
 <element name="order" table="t06">
 <attribute name="id" column="c0601"/>
 <attribute name="receiveDate" column="c0603"/>
 <attribute name="sendDate" column="c0604"/>
 <element name="item" table="t07">
 <attribute name="id" column="c0701"/>
 <attribute name="product" column="c0703"/>
 </element>
 </element>
 </element>
</setup>

 - 82 -

Appendix C

The following shows the intermediate SQL statement for the query

/company[@name=’FZI’] applied to the view created through the annotated XML-Data

Reduced Schema from Figure 4-6 for the introductory example from Section 1.2. It

can be obtained using Microsoft Query Profiler when issuing the XPath query

against the Microsoft SQL Server 2000.

select 1 as TAG,
 0 as parent,
 _Q1.A0 as [company!1!name],
 _Q1.C0_ID as [company!1!ID!hide],
 NULL as [division!2!name],
 NULL as [division!2!ID!hide],
 NULL as [employee!3!name]
from (
 select _QB0.Name AS A0,
 _QB0.ID AS C0_ID,
 _QB0.Name AS C0_Name
 from Company _QB0
) _Q1
where (
 (CONVERT(nvarchar(4000),_Q1.A0,126)=N'FZI')
 and _Q1.A0 IS NOT NULL
)

union all

select 2, -- TAG
 1, -- parent
 NULL, -- [company!1!name]
 _Q1.C0_ID, -- [company!1!ID!hide]
 _Q2.A4,_Q2.C1_ID, -- [division!2!name]
 NULL, -- [division!2!ID!hide]
 NULL -- [employee!3!name]
from (
 select _QB0.Name AS A4,
 _QB0.ID AS C1_ID,
 _QB0.Name AS C1_Name,
 _QB0.Company AS C1_Company
 from Division _QB0
) _Q2,
 (
 select _QB0.Name AS A0,
 _QB0.ID AS C0_ID,
 _QB0.Name AS C0_Name
 from Company _QB0
) _Q1
where (
 (CONVERT(nvarchar(4000),_Q1.A0,126)=N'FZI')
 and _Q1.A0 IS NOT NULL
)
 and _Q1.C0_ID=_Q2.C1_Company

union all

select 3, -- TAG
 2, -- parent
 NULL, -- [company!1!name]
 _Q1.C0_ID, -- [company!1!ID!hide]
 NULL, -- [division!2!name]
 _Q2.C1_ID, -- [division!2!ID!hide]
 _Q3.A5 -- [employee!3!name]
from (
 select _QB0.Name AS A5,
 _QB0.Name AS C3_Name,
 _QB0.Division AS C3_Division
 from Employee _QB0
) _Q3,
 (
 select _QB0.Name AS A4,
 _QB0.ID AS C1_ID,

 - 83 -

 _QB0.Name AS C1_Name,
 _QB0.Company AS C1_Company
 from Division _QB0
) _Q2,
 (
 select _QB0.Name AS A0,
 _QB0.ID AS C0_ID,
 _QB0.Name AS C0_Name
 from Company _QB0
) _Q1
where (
 (CONVERT(nvarchar(4000),_Q1.A0,126)=N'FZI')
 and _Q1.A0 IS NOT NULL
)
 and _Q2.C1_ID=_Q3.C3_Division
 and _Q1.C0_ID=_Q2.C1_Company

order by 4,6,2

 - 84 -

Appendix D

Here, the more or less obvious parts of the core algorithm for building the ex-

pression (see Section 5.8.1.3) shall be annotated for the sake of completeness.

FUNCTION processNaryExpr(
 IN (NodeOperand contextNode, Operand contextCond);
 IN XPathExpression expr;
 OUT Operand;
)
 int termcount = expr.getTermCount();
 if (termcount<2)
 {
 // how comes?
 throw new Exception();
 }
 Expression term = expr.getTerm(0);
 OperandSet operandset = processExpr((contextNode, contextCond), term);
 Operand operand = operandset;
 for (int i=1; i<termcount; i++)
 {
 term = expr.getTerm(i);
 BinaryOperation operation = expr.getOperator().getInstance();
 operation.setLeftOperand(operand);
 operandset = processExpr((contextNode, contextCond), term);
 operation.setRightOperand(operandset);
 operand = operation;
 }
 return operand;
END FUNCTION

FUNCTION processExpr(
 IN (NodeOperand contextNode, Operand contextCond);
 IN XPathExpression expr;
 OUT Operand;
)
 if (expr instanceof XPathFilterExpr)
 { // not yet implemented
 throw new Exception();
 }
 if (expr instanceof XPathFunctionCall)
 { // not yet implemented
 throw new Exception();
 }
 if (expr instanceof XPathLiteral)
 {
 Variable result = new Variable();
 result.setContent(expr.getValue());
 result.setDataType(DataType.String);
 return result;
 }
 if (expr instanceof XPathLocationPath)
 {
 return processLocationPath((contextNode, contextCond), expr);
 }
 if (expr instanceof XPathNaryExpr)
 {
 return processNaryExpr((contextNode, contextCond), expr);
 }
 if (expr instanceof XPathNumber)
 {
 Variable result = new Variable();
 result.setContent(expr.getValue());
 result.setDataType(DataType.Number);
 return result;
 }
 if (expr instanceof XPathVariable)
 { // not yet implemented
 throw new Exception();
 }
 // come here?
 throw new Exception();
}

 - 85 -

 - 86 -

Appendix E

This is the grammar in BNF for the Rule Language of the approach of Jain et

al. It has been obtained from http://www.cs.washington.edu/homes/ratul/dbproject/grammar.html in

July 2002. It is below-mentioned to ensure its availability for the case the web site

moves. The parts concerning XPath are marked in dark gray.

Program ::= ((Head "=" Body ";"))* <EOF>
Head ::= ((Id) "(" (Tag) ("," (PList))? ")")
Body ::= (SimpleBody | ConditionalBody)
SimpleBody ::= (FCall | ReturnCall)
FCall ::= ((Id) "(" (XPath) ("," (PList))? ")")
ReturnCall ::= (<RETURN> "(" (PList) ")")
ConditionalBody ::= <IF> "(" (Condition) ")" (SimpleBody) (<ELSE> Body)?
Condition ::= ((OrCondition) | (AndCondition) | (SimpleCondition))
SimpleCondition ::= ((RelationalExpr) | "(" (Condition) ")")
OrCondition ::= (SimpleCondition) "||" (SimpleCondition)
AndCondition ::= (SimpleCondition) "&&" (SimpleCondition)
NotCondition ::= "!" (SimpleCondition)
RelationalExpr ::= ((IdOrPhiOrConst) "==" (IdOrPhiOrConst)
 | (IdOrPhiOrConst) "!=" (IdOrPhiOrConst)
 | (IdOrPhiOrConst) "<" (IdOrPhiOrConst)
 | (IdOrPhiOrConst) "<=" (IdOrPhiOrConst)
 | (IdOrPhiOrConst) ">" (IdOrPhiOrConst)
 | (IdOrPhiOrConst) ">=" (IdOrPhiOrConst))
XPath ::= (("/") | ("/" (RelativePath))
 | (RelativePath) | (XPath "|" XPath))
RelativePath ::= ((XPUnit) ("/" (XPUnit))*)
XPUnit ::= ("." | ".." | Id | "*")
PList ::= (Id ("," (Id))*)
Tag ::= ((Id) | "*")
IdOrPhiOrConst ::= (PhiVal | PhiTag | IdVal | IdTag | Constant)
PhiVal ::= <PHI_VAL>
PhiTag ::= <PHI_TAG>
IdVal ::= <IDENTIFIER> ".val"
IdTag ::= <IDENTIFIER> ".tag"
Constant ::= <CONSTANT>
Id ::= <IDENTIFIER>

 - 87 -

http://www.cs.washington.edu/homes/ratul/dbproject/grammar.html

 - 88 -

Bibliography

[BBG+99] Datablitz storage manager: Main memory database performance for critical applications,

Baulier, J., Bohannon, P., Gogate, S., Gupta, C., Haldar, S., Joshi, S., Khivesera, A.,

Korth, H. F., McIlroy, P., Miller, J., Narayan, P. P. S., Nemeth, M., Rastogi, R., Seshadri,

S., Silberschatz, A., Sudarshan, S., Wilder, M., Wei, C., In Proceedings of the ACM

SIGMOD International Conference on the Management of Data, 1999

[BGK+02] Optimizing View Queries in ROLEX to Support Navigable Result Trees, Bohannon, P.

Ganguly, S., Korth, H. F., Narayan, P. P. S., Shenoy, P., In Proceedings of 28th Interna-

tional Conference on Very Large Data Bases, August 2002, Hong Kong, China

[BoKN01] The Table and the Tree: On-Line Access to Relational Data through Virtual XML Docu-

ments, Bohannon, P., Korth, H. F., Narayan, P. P. S., Proceedings of the Fourth

International Workshop on the Web and Databases (WebDB'2001), Santa Barbara, CA,

May 24-25, 2001

[Brad01] The XML companion, 3rd edition, Bradley, N., Addisson-Wesley, 2001

[CFI+00] XPERANTO: Publishing Object-Relational Data as XML, Carey, M., Florescu, D., Ives,

Z., Lu, Y., Shanmugasundaram, J., Shekita, E., Subramanian, S., In Proceedings of

WebDB, Dallas, TX, May 2000

[CKS+00] XPERANTO: A Middleware for Publishing Object-Relational Data as XML Documents,

Carey, M., Kiernan, J., Shanmugasundaram, J., Shekita, E., Subramanian, S., In Pro-

ceedings of the 26th International Conference on Very Large Databases, Cairo, Egypt,

2000

[ChF+01] XQuery: A query language for XML, Chamberlin, D., Florescu, D., et al, J. R. (2001). In

W3C Working Draft, http://www.w3.org/TR/xquery.

[ChMe77] Optimal implementation of conjunctive queries in relational data bases, Chandra, A.,

Merlin, P., In Procedings of the 9th ACM Symposium on Theory of Computing, pages 77-

90, Boulder, Colorado, Mai 1977

[ChRF00] Quilt: An XML query language for heterogeneous data sources, Chamberlin, D., Robie, J.,

and Florescu, D., In Proceedings of the International Workshop on Web and Databases

(WebDB ’2000), Springer Verlag, 2000

[Date93] A guide to the SQL Standard : a users guide (covers “SQL2”), C. J. Date with Hugh Dar-

wen, 3rd ed., Addisson-Wesley, 1993, ISBN 0-201-55822-X

[DeFF99] XML-QL: A query language for XML, Deutsch, A., Fernandez, M., and Florescu, D., In

Proceedings of the 8th International World Wide Web Conference, Toronto, May 1999

[FeMS01] Efficient Evaluation of XML Middleware Queries, Fernandez, M., Morishima, A., Suciuy,

D., ACM SIGMOD 2001 May 2124, Santa Barbara, California, USA, Copyright 2001

ACM 1581133324/01/05

[FFL+02] XTABLES: Bridging Relational Technology and XML, Fan, C., Funderburk, J., Lam, H.,

Kiernan, J., Shekita, E., Shanmugasundaram, J., March 2002, (not yet published, see

http://xperanto.dfw.ibm.com/demo/papers/xtables.pdf)

[GrWe94] LAN Times Guide To SQL, Groff, J. R., Weinberg, P. N., Osborne McGrawhill, 1994

ISBN 0-07-882026-X

[HaMe01] XML in a Nutshell. A Desktop Quick Reference, Harold, E. R., Means, W. S., O’Reilly,

January 2001

 - 89 -

http://www.w3.org/TR/xquery
http://xperanto.dfw.ibm.com/demo/papers/xtables.pdf

[Isem01] Microsoft SQL Server 2000 Reference Library, SQL Server 2000 Architecture and

XML/Internet Support (Volume 1), David Iseminger, Microsoft Press, 2001, ISBN 0-7356-

1280-3, Chapter 13 “Accessing SQL Server Using HTTP”, Chapter 14 “Creating XML

Views Using XDR Schemas”, Chapter 15 “Using XPath Queries”

[JaMS02] Translating XSLT Programs to Efficient SQL Queries, Jain, S., Mahajan, R., Suciu, D.,

WWW2002, May 2002, Honolulu, Hawaii, USA, ACM 1581134495/02/0005, Project

Homepage: http://www.cs.washington.edu/homes/ratul/dbproject/

[KaST02] Datenbanken und XML, Kazakos, W., Schmidt, A., Tomczyk, P., Springer Verlag Berlin

Heidelberg, 2002, ISBN 3-540-41956-X

[Kay01] XSLT Programmers Reference, 2nd Edition, Michael Kay, Wrox Press, 2001, ISBN 1-

861005-06-7

[LaLo95] Datenbankeinsatz, Stefan M. Lang, Peter C. Lockemann, Springer, 1995, ISBN 3-540-

58558-3, Chapter 22.3.1 “Syntaktische Grundform des Anfragemodells.“

[Malc01] Programming Microsoft SQL Server 2000 With XML, Graeme Malcom, Microsoft Press,

2001, ISBN0-7356-1369-9, Chapter 2 “Retrieving XML Data Using Transact-SQL”, Chap-

ter 3 “Using ADO for XML Data Access”, Chapter 4 “Using HTTP for Data Access”, and

Chapter 5 “Using XML Templates to Retrieve Data over HTTP”

[MSDN01] XML and Internet Support, Using EXPLICIT Mode, MSDN,

http://msdn.microsoft.com/library/en-us/xmlsql/ac_openxml_4y91.asp

[Shan01] Bridging Relational Technology and XML, A dissertation submitted in partial fulfillment

of the requirements of the degree of Doctor of Philosophy (Computer Science), Shan-

mugasundaram, J., University of Wisconsin, Madison, 2001

[SKS+01] Querying XML Views of Relational Data, Shanmugasundaram, J., Kiernan, J., Shekita,

E., Fan, C., Funderburk, J., In Proceedings of the 27th VLDB Conference, Roma, Italy,

2001

[SSB+00] Efficiently Publishing Relational Data as XML Documents, Shanmugasundaram, J.,

Shekita, E., Barr, R., Careyq, M., Lindsay, B., Pirahesh, H., Reinwald, B., In Proceedings

of the 26th International Conference on Very Large Databases, Cairo, Egypt, 2000

[Vali02] Технология XSLT, Алексей Валиков, БХВ-Петербург, 2002, ISBN 5-94157-129-1,

Chapter 6 "XPath-выражения".

[W3C98a] Extensible Markup Language (XML) 1.0, W3C Recommendation 10-February-1998,

http://www.w3.org/TR/1998/REC-xml-19980210

[W3C98b] Document Object Model (DOM) Level 1 Specification, , Version 1.0, W3C Recommenda-

tion 1 October, 1998, http://www.w3.org/TR/REC-DOM-Level-1/

[W3C99] XML Path Language (XPath) version 1.0 http://www.w3c.org/TR/xpath

[YASU01] XRel: a path-based approach to storage and retrieval of XML documents using relational

databases, Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, Shunsuke

Uemura, ACM Transactions on Internet Technology (TOIT), Volume 1, Issue 1 (August

2001), ACM Press, 2001, ISSN:1533-5399, http://portal.acm.org/citation.cfm?doid=383034.383038

 - 90 -

http://www.cs.washington.edu/homes/ratul/dbproject/
http://msdn.microsoft.com/library/en-us/xmlsql/ac_openxml_4y91.asp
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3c.org/TR/xpath
http://portal.acm.org/citation.cfm?doid=383034.383038

